Spatial-Difference-in-Differences (SIDD) Models for Impact of New Mass Rapid Transit Line on Private Housing Values

Mi DIAO¹, Delon LEONARD², and Tien Foo SING³

Date: 23 May 2017

Abstract:

This study uses the opening of the new Circle Line (CCL) in Singapore as a natural experiment to test the effects of urban rail transit networks on non-landed private housing values. We use a network distance measure and a local-polynomial-regression approach to identify the CCL impact zone that shows discontinuity in housing price gradient between a treatment zone and a control zone. We then estimate a spatial difference-in-differences model that accounts for spatial autocorrelation in housing price changes in the two zones “before and after” the opening of the CCL, in addition to other controls, such as housing attributes, local amenities, spatial and temporal fixed effects. We find that the opening of the CCL increase housing value in the treated neighbourhoods located within the 600-metre network distance from the new CCL stations by approximately 7.8%, relative to other properties in the untreated neighbourhoods. We also find significant “anticipation” effects that appear 1 year prior to the opening of the CCL line, and the effects diminish closer to the actual opening date. The results imply that inter-dependence spatial structure between the treated and the untreated neighbourhoods is relevant and significant, if neglected, may lead to over-estimation of capitalization effects of new transit lines on housing values.

Keyword: Urban rail transit network; housing values; network distance; local polynomial regression; spatial difference-in-differences estimator; spatial autocorrelation

JEL Code: C21, R4, R21,

1 Department of Real Estate, National University of Singapore. Email: rstdm@nus.edu.sg
2 Department of Real Estate, National University of Singapore. Email: delonleonard@u.nus.edu
3 Corresponding author. Department of Real Estate/ Institute of Real Estate Studies (IRES), National University of Singapore: Email: rststf@nus.edu.sg
1. Introduction

An efficient and environmentally-friendly urban rail transit system (RTS) has become an indispensable part of urban infrastructure in today’s cities. Governments of many developed and developing countries have invested a huge sum of public money to build new and/or expand existing urban RTSs in their major cities. New RTS lines improve connectivity and bring agglomeration to the city centre; and as a city grows, economic externalities could spill over through extending the RTS lines to other areas outside the city. New RTS investments help narrow the rental gaps between the city centre and the outlying, and as a result, flatten the bid-rent gradient (McMillen and McDonald, 2004; Zheng and Kahn, 2008).

There are other social and economic cost and benefit associated with new RTS lines. A “substitution” effect between road and RTS transport modes is created, if some private car owners switch to urban RTS when commuting to city centres (Baum-Snow and Kahn, 2000). When more public road users switch to RTS, public road users could enjoy shorter travelling time on less congested roads and reap significant reduction in marginal social costs; and in addition, environmental quality is also improved through the reduction in greenhouse gas emissions by users who switch from private cars and public buses to RTS.

The accessibility benefits of a RTS are local by nature. People who live near transit stations are more likely to use the urban RTS for commuting purposes. Therefore, we expect variations in housing prices between areas that are within and those that are outside the accessibility range of RTS stations. Many studies have found empirical evidence of positive capitalization effects of proximity convenience associated with new urban RTS stations on housing prices. However, these studies, which usually capture capitalization effects of RTS with a distance variable (either discrete or continuous) in the standard OLS hedonic housing price model, are vulnerable to the problems relating to omitted variables and endogeneity in housing prices and distances to RTS stations. Some of these problems are spatial by nature; and this paper applies three innovations in spatial statistical tools to improve the quasi-experiment approach in capitalizing the RTS effects.

1 Evidence of positive capitalization effects of urban rail transit systems is shown in many studies across different countries, which include studies in major US cities (non-exhaustive), such as Washington DC (Damm et al., 1980), Atlanta (Nelson, 1992; Bowes and Ilhanfeldt, 2001), Miami (Gatzlaff and Smith, 1993), Chicago (McDonald and Osuji, 1995; McMillen and McDonald, 2004), San Francisco (Landis et al., 1995), and other cities such as Toronto (Bajic, 1983; Dewees, 1976), Taipei (Lin and Hwang, 2003), Seoul, (Bae et al., 2003), London (Gibbons and Machin, 2005) and the Netherlands (Amsterdam, Rotterdam and Enschede) (Debrezine et al., 2011).
First, most studies use either a Euclidean distance (Baum-Snow and Kahn, 2000; Chalermpong, 2007, and others), or a Euclidean-distance-based ring buffer (Lin and Hwang, 2003; Des Rosier et al., 2010; Dube et al., 2011; and others) to identify the treatment zone with respects to the nearest RTS stations. At the local level, RTS stations are not usually surrounded by lands with flat and plain topographies. Instead, they are sometimes criss-crossed by major road networks, divided by rivers, and obstructed by other buildings. The diverse spatial and topographic features could be potential sources of measurement errors, especially in a densely built-up urban cities. Incorrect distance measures, if used indiscriminately without adjustments, could distort the pricing of RTS accessibility premiums. In this study, we use a network-based distance measure to capture the shortest route (network distance) between a house and the nearest RTS station based on the local road network map. The network walking distance to the nearest RTS stations is a more realistic and direct way of capturing users’ marginal willingness to pay (MWTP) in housing prices.

Second, based on social and economic considerations, central planners in most Asian high-density cities\(^2\) are more inclined to site RTS stations in neighbourhoods with a large population coverage to justify that the RTS services and operations are economically viable. Areas served by the RTS stations (treatment areas) may contain both observed and unobserved demographic and spatial attributes that are not found in those areas without the RTS convenience (control areas). While we could include observed spatial factors, and control for unobserved spatial attributes using location fixed effects in the model, it is difficult to separate covariance in the buyers’ demand for the local amenities in high density areas from the effects of RTS stations. The supply inelasticity imposed by the shortage of vacant lands near RTS stations may create, in equilibrium, disproportional price responses to increased demand in the area. We apply the local polynomial regression (LPR), which is a spatial innovation used in Linden and Rockoff (2008), to fit housing prices on distances to RTS stations with a locally weighted least squares estimator. The LPR allows for non-linear capitalization effects, which are likely to be stronger in areas near the new RTS stations where housing supply is highly inelastic.

\(^2\) In the US cities, Bowes and Ihlanfeldt (2001) show that crime rates are higher in areas that are closer to the rail transit stations, and housing values
Third, while most residents could not influence and vote on, in most instance, the decisions on the location of a new rail transit station; they could, however, vote with their feet by moving close to a RTS station in the neighbourhood. Families that have a high MWTP for the RTS accessibility buy houses from families who stay near RTS stations, and yet have relatively low MWTP for the RTS services. These new families who are unlikely to own private cars move in and displace the existing families from the RTS neighbourhoods; they create a different form of social network for the treatment area over time. The new RTS line attracts new local amenities and other commercial activities into the neighbourhood. The spatial dynamics of the treatment neighbourhoods near a new RTS line could be different from the (control) neighbourhoods not served by a RTS line. The standard difference-in-differences (diff-in-diff) approach that assumes constant spatial attributes in the treatment and control areas before and after the treatment could over-estimate the capitalization effects associated with the opening of new rail transit stations. We incorporate the dynamic and spatially-dependent treatment effects by adding spatial-autoregressive lag and error terms into our difference-in-differences (diff-in-diff) housing price models (Anselin, 1988).

The Mass Rapid Transit (MRT) system is a rail-based transit system started running in 1987; and it forms the backbone of the public transport system in Singapore. The MRT network has been expanded over the years with additions of new line and stations to meet the growing commuter demand. In this study, we use the opening of the new Circle Line (CCL), the fourth line on the MRT network in Singapore, in a quasi-natural experiment, and apply the rigorous spatial-dependence diff-in-diff models to evaluate the capitalization effects of the CCL on non-landed private housing values.

Using the same LPR model as in Linden and Rockoff (2008), we identify the area within 600 meters (m) by the network distance from the closest new CCL stations as the impact (treatment) zone. Based on the locally weighted impact zone, we sort the housing samples into a treatment group, if the shortest network distance between houses and the closest CCL stations falls within 600m; and otherwise, into a control group. The treatment effects, which show the price premiums for non-landed private houses in the treated zone relative to the control zone “before and after” the opening of the new CCL, are estimated at 10.6% after controlling for housing characteristics, local amenities, spatial and temporal fixed effects. However, when the inter-zone spatial dependence
structure is added to the spatial diff-in-diff (SDID) model, we find significant, but weaker treatment effects of 7.8% for the treated houses relative to the untreated houses.

Based on the 3,755 non-landed houses in the treatment zone transacted after the opening of new CCL stations with an aggregate value of S$4.42 billion, the treatment effects of the new CCL opening are translated into realized economic benefits of approximately S$349.17 million. For housing buyers, the findings show the importance of understanding spatial variations and dynamics when capitalizing RTS effects into housing values. For urban and transport planners, they should be mindful of local features and land supply constraints when designing transportation policy and value capture programs.

This paper is organized as follows. Section 2 reviews related literature in the study of the relationships of RTS locations and housing values. Section 3 provides a brief overview of the housing market and the MRT network in Singapore as background information. Section 4 describes the data and empirical methodology. The Section shows graphical evidence on the impact of the CCL using the local-polynomial-regression analysis, and discusses the identification strategy. Section 5 presents and discusses the empirical results. Section 6 concludes the paper.

2. Literature Review
Alonso (1964), Muth (1969) and Mills (1972) argue that households trade-off between commuting cost and housing consumptions in their residential location decisions. This premise lays down the fundamental for the monocentric city model that predicts a negative housing price gradient with respects to distance (transportation cost) to the employment centre. The negative price-distance relationship, which is known as the bid rent curve in the urban economic literature, has significantly shaped the urban landscape, and influenced spatial distributions of households and firms across a city. Many empirical studies have shown that new urban RTS infrastructure investments could significantly flatten the bid rent gradient, and reduce the housing price gap between urban and rural areas (Nelson, 1992; Gatzlaff and Smith, 1993; Landis et al., 1995; McDonald and Osuji, 1995; Bowes and Ihlanfeldt, 2001; McMillen and McDonald, 2004; and others). Increased accessibility brought by new RTS investments is translated into housing wealth accrued to local residents via the capitalization of the RTS line effects (Edel and Sclar 1974; Hilber and Mayer, 2009; Diao et al., 2017).
A large number of empirical studies has found evidence of positive capitalization effects of proximity to RTS stations in housing values (Gibbons and Machin 2005; Hess and Almeida, 2007; Diao and Ferreira, 2010; Diao, 2015; among others). Debrezion et al. (2007) provide a meta-analysis of 57 cities and suggest that property values increase by 2.3% every 250 m closer to a railway station. There are also other studies that find insignificant, or in some cases, even negative effect of the proximity to selected RTS stations in some cities (e.g., Gatzlaff and Smith, 1993; Landis et al., 1995). The negative externalities are usually caused by noise and high crime rates found in areas near RTS stations (Bowes and Ihlanfeldt, 2001, Diao et al., 2016).

Most of the early studies use a Euclidean distance measure to the closest RTS station, which is represented either by a discrete or a continuous variable in standard hedonic models, to capture cross-sectional variations in housing prices (For examples: Coffman and Gregson, 1998; Bowes and Ihlanfeldt, 2001; Hess and Almeida, 2007; and Diao and Ferreira, 2010). The regional and urban economic literature seems to fall behind in the application of GIS-based network analysis tool in measuring distances to RTS stations. This study hopes to lead the literature in applying the network tool to measure a distance between a house and a RTS station via the shortest route. The network distance is a more realistic measure taking into account natural obstacles (rivers, canals, and parks) and spatial constraint (existing buildings and rail tracks) in local areas.

The popular Rosen’s hedonic housing price models, despite having a rich set of housing and spatial attributes, face serious endogeneity issues when applied to study the RTS effects. The models are not able to separate unobserved factors that could influence covariance between housing price and RTS accessibility. Some researchers use the repeated sales data to control for the endogeneity effects between unobserved factors and urban RTS in modelling housing price changes (For example, McMillen and McDonald; 2004; Billings; 2011; Chatman et al., 2012; Dube et al., 2013; Kim and Lahr, 2014; Sun et al., 2015). The repeated-sales approach removes biases caused by time-invariant omitted variables by taking the first differencing in housing prices. The basic idea is to regress price changes on a time vector that corresponds to the time periods between consecutive sales of the same house; and keeping the hedonic attributes of the same house and its surrounding neighbourhood characteristics constant, price changes, if observed, must be correlated with a new RTS line opening that falls within the repeated sale periods. By limiting the sample to
only houses that sell at least twice, the sample is significantly reduced; and in the sample selection process, biases may arise because houses that are sold twice or multiple times are likely to have different attributes from those that sell only once (Gatzlaff and Haurin, 1997).

Changes in structural characteristics and/or (dis)amenities in local areas sometimes occur over a long period of time, and sometimes randomly; and thus differencing the repeated housing prices alone could not adequately remove inter-temporal effects of both observed and unobserved factors. In recent years, a quasi-experimental approach has become increasingly popular among researchers in the regional and urban economic literature (Gibbons and Machin, 2005; Billings, 2011; Diao et al., 2017). In a randomized experiment, sample houses are sorted into a treatment group and a control group based on the proximity to RTS stations, and a random event, such as the opening of new RTS stations, is used to create exogenous shocks to housing prices. The difference-in-differences (diff-in-diff) models are estimated to test the effects on before-and-after price changes between a treatment group (an affected area) and a control group (an unaffected area) following the exogenous shock, controlling for observed and unobserved variations in housing and spatial attributes. If the pre-existing between-the-group price variations change after the treatment, the causality of new RTS stations on housing prices could be established in the local areas.

In the diff-in-diff models, defining the treatment area using proximity measures (such as linear distance or buffer zone) is subject to omitted variable problems, especially when the selection of the RTS station location is not exogenous. For instance, central planners are more likely to put a RTS station in high density city centres than in sparsely populated rural areas, ceteris paribus. The RTS effects in a densely populated city centre co-vary closely with other amenities in the areas. Other cofounders such as shopping facilities that are attracted to areas near RTS stations could also influence the preference of people for housing that are close to RTS stations, and it would be difficult to measure house buyers’ MWTP for the RTS accessibility. Facing the same challenges in the study of negative externalities of living close to convicted criminals, Linden and Rockoff (2008) use a local polynomial regression approach to identify the treatment effects weighted by moving-in and location of a sex offender’s house in a neighbourhood. Haninger et al. (2012) use the same approach to study the impact of brownfield remediation; and Muehlenbachs et al. (2012) study the impact of shale gas developments on property values. We use for the first time this spatial
innovation to study how the opening of new MRT line in Singapore would impact housing values in the areas near the new MRT stations.

However, in areas undergoing dynamic changes following the opening of new RTS stations, there is a need to control for possible auto-regressive lag and error in spatial interactions of houses within the treatment areas, and over times (Anselin, 1988). The applications of the state-of-the-art spatial-econometric techniques has attracted strong interests in recent years; and for examples, Chagas et al. (2016) use the spatiotemporal dependence diff-in-diff (SDID) to study sugarcane production and health; and Brasington et al. (2016) use the spatial autoregressive lag multinomial logit model to study school enrolment choice. Heckert and Mennis (2012) apply the SDID models to measure the impact of innovative vacant land greening programs on residential property values in Philadelphia; and Dube et al. (2014), which is the closer to our study, use the SDID to study impact of public mass transit system expansion on real estate values in Montreal, Canada, though they found insignificant treatment effects in the results.

3. Urban Rail Transit Network in Singapore

Singapore is an island-state with a land area of approximately 714 square kilometres (km²).\(^3\) Recognizing the physical constraints for building more roads, the Singapore’s government has conducted a series of feasibility studies on the construction of a new rail transit system to alleviate traffic congestion problems since 1967. The greenlight was finally given by the Parliament in 1982 to proceed with the massive MRT project, which was estimated to cost about S$5.3 billion (in 1982 dollars). The initial phase of the MRT system comprises the 67 kilometres North-South Line (NSL) and the East-West line (EWL), of which 19 kilometres (km) of the rail tracks are underground. These two lines having 42 stations form the backbone of Singapore’s MRT system today. Building works for the proposed MRT system started in October 1983. A 6-kilometer stretch of the NSL running from Yio Chu Kang to Toa Payoh first opened in 1987; and the two MRT lines were fully completed and in operations only in July 1990.

Singapore’s government continues to expand the MRT network by adding new MRT lines and more stations to meet the growing commuters’ demand. In 2003, the new Northeast Line (NEL)
with 16 stations and a total track length of 20 km was added to the MRT network. The Circle Line (CCL) is Singapore’s fourth MRT line, which opened in three stages between 2009 and 2012:

- **Phase 1**: 28 May 2009: (Bartley - Marymount)
- **Phase 2**: 17 April 2010: (Dhoby Ghaut - Bartley) (eastern stretch)
- **Phase 3**: 8 October 2011: (Marymount – Harbour Front) (western stretch)

The 35.7 km CCL is a ring-shaped line connecting the three existing line at 6 different interchanges (Figure 1). The new CCL extension joining the Marina Bay Stations to a new Promenade station on the CCL line was added and opened on January 14, 2012. By 2014, the MRT network coverage consists of 154.2 km MRT rail line and 106 MRT stations. The annual daily ridership for the MRT system is estimated at 2,879,000 as in 2015. The government unveils the 2013 Land Transport Master Plan (LTMP) with a long-term plan to double the current MRT network to 360 km by 2030. Two new rail lines, which are the Cross Island Line (CRL) and Jurong Region Line (JRL) will be built, and extensions to the Circle Line (CCL), North East Line (NEL) and the Downtown Line (DTL) are also planned to improved connectivity of the MRT system. By then, eight out of ten households in Singapore will be able to access to the nearest MRT station within a 10-minute walk. Singapore will surpass the current rail length in Tokyo (304 km) and Hong Kong (218 km) upon the completion of the planned MRT networks. Table 1 shows the existing and the proposed MRT lines.

[Insert Table 1 and Figure 1 here]

\[4. \textbf{Data and Empirical Design}\\
4.1. \textit{Data Sources}\\
Singapore has a unique two-tiered housing market with a dominant public housing market coexisted with a private housing market, which operates like any other \textit{laisse-faire} markets.\footnote{During the study period, the average unit price for non-landed private houses along the CCL corridor is estimated at S$12,330 psm, compared to the average of S$4,180 psm for resale public housing flats.} As in

\footnote{4 Singapore Land Transport: Statistics in Brief 2015. Source: Land Transport Authority.\\5 Source: LTA, Land Transport Master Plan 2013.}
2016, the private housing stocks constitute about 27% of the total housing stock\(^7\) (about 372,462 units based on 1Q2016 statistics\(^8\)); and 73.96% of the private housing stock is made up of non-landed housing types, which include executive condominiums, apartments and condominiums. We use only the non-landed housing samples in our analysis;\(^9\) and they are identified by the three property type dummies: “apartment” (37.1%), “condominium” (62.3%) and “executive condominium” (0.6%).

We obtain the transaction data from the “Realis” database, a real estate information system managed by the Urban Redevelopment Authority (URA) covering the 6-year period from April 2007 to March 2013. The data contains the detailed records of non-landed private housing transactions in Singapore, which include transaction price, transaction date, street address, postal code, and various attributes of properties including floor area, floor level, property type, property lease type, purchaser type, and sale type. Table 2 presents the descriptive statistics, which include mean (in Column 2) and Standard Deviation, (S.D.) (in Column 3) of the key variables for the full sample. The average price of the housing sample is estimated at S$1,402,168 (US$1,106,684), or an equivalent of S$12,234 per square meter (S$/psm) (US$9,656 psm).\(^{10}\) The average floor area is about 103.5 sqm (or “ln Floor Area” of 4.640) and the average floor level of 7.8 reflects the high-density living characteristics in Singapore. By land tenure type, 51.2% of the housing samples are built on “Freehold” lands, and the remaining 48.8% of the housing samples on the “Leasehold” lands with a typical 99-year lease. The purchaser type is sorted based on his/her current address into “HDB” (32.3%), if a purchaser live in a public flat; and “Private” (67.7%), if a purchaser live in a private apartment. The housing data are also grouped by the sale type into three categories: “Newsale” indicates a pre-completion housing sale by developers (51.2%); “Subsale” indicates a housing unit sold by an individual owner before completion (8.2%); and “Resale” indicates a completed housing unit sold by an individual owner in the secondary markets (40.6%).

[Insert Table 2 here]

\(^8\) Source: The Realis database, Urban Redevelopment Authority (URA), Singapore.

\(^9\) The volume of landed housing transactions near the CCL MRT stations is small, and thus excluded from the study. Households living in the landed houses are mainly high-income families with a high level of car dependency, and their MWTP for the MRT services is expected to be small relative to the prices of their landed houses.

\(^{10}\) Based on the exchange rate of US$1: S$1.267 as on 31 December 2013 (Source: finance.Yahoo.com).
Each transacted property is geocoded based on a unique 6-digit postal code using the geographic information systems (ArcGIS) tools. For the purpose of mitigating possible boundary discontinuity problems, we demarcate the study area by a 1.6 km radius from CCL stations, and retain a total sample of 21,954 non-landed private housing transactions for our analysis. The sample housing transactions are represented by the green dots in Figure 1. We conduct robustness tests by expanding the study areas to 2.0 km radius from the CCL stations. For each of the geocoded housing samples, we measure the distances to various local amenities, including the CBD, top primary schools, major shopping malls, bus stops, and the expressway, and control these factors in the regression. The summary statistics for the spatial variables are summarized in Table 2.

4.2. Network Distance and Treatment Zone
The monocentric city model assumes that urban lands have plain and smooth terrain, on which different land uses are uniformly distributed from the city centre to the rural areas. The land supply in a monocentric city is mainly, if not solely, governed by zoning and density controls. The “man-made” controls influence prices in local real estate markets. Saiz (2010) shows that the regulatory controls are endogenous and highly dependent on the geography and topography of a city. Based on the satellite-based land use data provided by the United States Geographic Service (USGS), he shows that the land supply elasticity is severely constrained by spatial and topographical features, such as elevated terrains and water bodies. Therefore, the most widely used Euclidean measure of distance to the nearest RTS/MRT stations, which ignore spatial and topographical constraints, could distort the estimation of housing price premiums.

Figure 2 uses a sample house located at 107 Aljunied Crescent to illustrate the differences between the Euclidean distance (dotted line) and the network-distance (darkened line) measured with reference to the nearest MacPherson MRT Station. The sample house is separated by the Pan Island Expressway; and if the spatial constraint that hinders the direct access to the MRT station were ignored, we obtain the Euclidean distance of 1,010.58m to the MRT station. The Euclidean distance is a simple, but not a practical measure on the ground, because it is not possible for the owner of the sample house to cross the expressway and walk to the MRT station. The owner is likely to use the shortest route as indicated by the darkened line, which is measured at 1,514.13m, to go from his/her house to the MRT station. Therefore, a proximity measure without considering spatial
features and the actual configuration of road networks is subject to measurement errors; and if used indiscriminately, could result in biased estimation.

This study is probably one of the few in the urban literature that uses the network-based distance to measure the distance of a sample house to the nearest CCL MRT station. We overlay the major road network points obtained from the Singapore Land Authority (SLA) onto the base layer of geospatial data of housing sale and MRT locations. Using the ArcGIS tool, we simulate the shortest route (or known as the network distance) for a sample homeowner to walk to the nearest MRT station taking various obstacles, such as expressway and waterbodies, into considerations. For the full housing samples, the shortest network distance to the nearest CCL MRT stations adjusting for spatial and topographical constraints is estimated at 803.19 meters (m), on average, which is significantly larger than the average Euclidean distance of 490.77 m for the same sample.

4.3. *Local Polynomial Regression (LPR)*

Previous transport studies invariably use a discretely defined buffer zone of around 400m from the transit stations to demarcate the catchment (treatment) area, because the 400m (Euclidean distance) is deemed to be a reasonable walkable distance for people (Untermann, 1984). The walkable distance, however, could be influenced by many factors, such as weather, culture, pedestrian walkways and infrastructure, among others. In addition, there are also possible cofounders, both cross-sectionally and temporally, that could influence housing prices near the MRT stations. Owners, who live close to MRT stations, may trade off accessibility benefits against other negative externalities, such as noise, traffic congestion, and loss of exclusivity in the living environment. For owners whose houses are not within walking distance to the nearest MRT stations, their MWTP for the MRT accessibility benefits is expected to decrease disproportionally with the distance to the stations; and the new CCL station capitalization effects are expected to dissipate from housing values after a certain cut-off distance. Therefore, studies that discretely impose a discontinuity on a treatment zone using a binary dummy may be subject to possible identification errors, for example, sorting two adjacent terrace houses into the treatment and the control group.
In the study of criminals, Linden and Rockoff (2008) find that localized dis-amenities are created when a sex offender moves into a neighbourhood, but the effect dissipates quickly with the distance from the criminal’s house. They model the effect of neighbourhood dis-amenities at the local level as a non-linear smoothing function in a local polynomial regression (LPR)\(^\text{11}\), and find significant differences in the pre-existing and the post-arrival price trends for houses located within 0.1 miles, and those located between 0.1 and 0.3 miles, after the arrival of sex-offenders into the neighbourhood. In our quasi-experiment setup, we use the LPR approach to identify differential (non-linear) treatment effects on houses located in a small localized area surrounding MRT stations. Based on the LPR model, we identify the cut-off of 600m (by the network distance) to the nearest CCL MRT stations, at which we sort the samples into a treatment group (\(\leq 600\) meters) and a control group (>600 meters).

We compute the descriptive statistics for the treatment zone (by the network distance) in Columns 4 and 5 of Table 2, and compare the statistics with a treatment zone defined by the Euclidean distance of 600m (Columns 8 and 9). The compositions of the treatment samples based on the two different distance measures: network distance versus linear distance, are different in various aspects. The sample size increases by more than double from 7,388 to 15,429, when we change the cut-off measure from the network distance to the Euclidean distance, though the same cut-off of 600m is kept. The average prices of the network-based treatment samples increase from S$1,192,170 (S$11,693 psm) to S$1,358,329 (S$12,349 psm) for the Euclidean-based samples. By the property type, the distributions between condominium and apartments are not significantly different between the two treatment samples; but executive condominiums (EC) are not found in the network-based treatment zone, whereas 0.9% of the samples in the Euclidean-based treatment zone is made up of EC. By land tenure, we also find relatively lower proportion of freehold properties relative to the leasehold properties (34.9%: 65.1%) in the network-based treatment zone compared to the Euclidean-based treatment zone (47.7%: 52.3%). In terms of buyer type (buyers currently living in public housing and those currently living private housing) and sale types (new sale, resale and sub-sale), the variations between the two types of treatment zone are marginal.

\(^{11}\) LPR is a nonparametric technique to estimate bivariate relations of two variables using a subset of the data, to produce a smooth curve point by point (See Appendix I for the technical details of the local polynomial estimator).
When we compare the network-based treatment samples with the control samples that fall outside the 600 m network distance boundary (Columns 6 and 7), we found that our control samples are nearly two times the size of the treatment sample (14,566), but smaller than the sample defined by the Euclidean distance. However, the control samples are also characteristically very different from the two sets of treatment samples defined earlier. The average housing price in the control zone is much higher at S$1,512,530 (S$12,509 psm), which is approximately 26.8% higher than the average housing price in the treatment zone (network distance). Variations in the transaction characteristics are marginal, in term of property type, and buyer type and sale type, except that most of the EC samples are found in the control zone. Houses in the control zone are larger by unit size (with average log-area of 4.674), but lower by height (average at 7.215 floor). There are more freehold-tenured houses in the control zone (59.5%) than in the treatment zone. We could not rule out that urban planners may “select” more densely built areas with lower surrounding land prices for new MRT stations.

Like in Linden and Rockoff’s (2008) study, it is difficult to isolate the effects of housing location selection by sex offenders because sex offenders are more likely to sort into low income neighborhoods. In our context, urban planners with the land value recapture objective in mind are also more likely to locate MRT stations in high density neighborhoods, or neighborhoods with elastic supply of lands for new housing developments. The siting of the MRT station has more direct impact on housing values, than people’s preference to live a MRT station. However, due to difficulty in identifying buyers’ and sellers’ preference, we are not able to explicitly correlate the capitalization effects of a pure random opening of a new MRT station event to the willingness to pay to live near a MRT station.

For the inter-temporal variations, we use the new CCL opening as a random and an exogenous shock to assess the pre-existing and the post-opening of new CCL stations on non-landed private housing values in a difference-in-differences (diff-in-diff) model, which will be discussed in greater details in the subsequent sections.

4.3.1. Graphical Evidence

Based on the LPR, we plot price gradients “before” and “after” the opening of the CCL line with respect to network distance to the closest CCL MRT stations in Figure 3. The x-axis is the network
distance to CCL stations, and the y-axis is the logarithm of inflation-adjusted housing price per m² adjusted for housing size and inflation. The darkened line shows the post-CCL opening price gradients in a range of between S$9,897 psm and S$13,360 psm (Ln Unit Price = 9.2 and 9.5) distributing across the neighbourhood demarcated by a 1,600 m radius from the closest CCL stations. The pre-CCL opening price gradient as represented by the dashed line shows lower housing prices of the pre-CCL periods relative to the post-CCL prices, except for the two areas between 600m and 700m and also above 1,500 m. If the new CCL stations were viewed as positive amenities, we expect buyers to pay premiums for houses that are located close to the MRT stations. Based on the price changes before and after the CCL opening as indicated by the gap between the darkened line and the dashed line, we find strong price increases for houses located within 600 m network distance to CCL stations compared to price changes for houses outside the 600m region. The pre- and post-CCL price effects appear to be non-linear in the small area subjected to the treatment of the CCL line. The graphical evidence suggests that the 600 m network distance to the nearest MRT station is an appropriate cut-off distance to define the impact zone of new CCL stations. The unit price increase in the impact zone after the CCL opening provides some graphical evidences that suggest a causal impact of new CCL stations on non-landed private housing values in the neighbouring areas. We use the 600 m cut-off (network) distance to sort the sample houses into a treatment group with direct accessibility benefits from CCL lines, and a control group that is indifferent to the opening of the new CCL line. We then estimate the difference-in-differences models to assess the treatment effect of the CCL opening in the next section.

[Insert Figure 3 here]

In Figure 4, we plot log-housing price changes (estimated using the LPR) with respect to the sale time, which is indicated by the number of month starting from the first sample date of March 2007 in the window. The solid vertical line indicates the dates of the three phases of CCL MRT stations openings. The dashed non-linear line shows the price gradient for houses in the control group, and the prices are significantly higher than the price gradient of the treatment houses as represented by the darkened curved line in the first 20 months of the window prior to the opening of the CCL. The two price gradients converged at approximately 6 months before the opening of Phase 1 of the CCL. The results imply strong “anticipative” effects of the CCL opening for houses located within 600m network distance from the closest CCL stations. The capitalization effects in the post-CCL
opening have been almost absorbed into houses in the treatment area 6 months prior to the Phase 1 opening of CCL (20th month); and thereafter, the prices in the treatment area and the control area are closely correlated. The early reaction to the CCL opening reveals strong “anticipative” effects from the housing markets, which was also found in McDoal and McMillen (2004) study of the Chicago’s UTS line; and we will conduct further tests on the “anticipative” effects in the following empirical sections.

[Insert Figure 4 here]

4.4. Spatial Difference-in-Differences (SDID) Model specifications
The study sets up a quasi-experiment to test if both cross-sectional and temporal variations in housing prices were observed between neighbourhoods with direct access to the new MRT stations and those that do not enjoy the new MRT effects. The two neighbourhoods are identified by a binary variable, “Treat”, which has a value of either 1 or 0 depending on whether a neighbourhood receives the direct treatment benefits of the new CCL MRT stations. We apply the two spatial innovations, which include the network distance measure and the local polynomial regression, in defining the “Treat” variable to capture the physical proximity to the new MRT stations. The local polynomial regression graph (Figure 3) shows a clear discontinuity in housing prices at the network distance of 600m; and we use this distance as the reference cut-off to demarcate the treatment boundary of the impact zone of new CCL stations. For a robustness test, we experiment with a cut-off using 600m linear distance.

Simulating a random shock with the opening of the new CCL MRT stations, we include the “Post” dummy, which is defined as the opening of the CCL MRT stations, \([t \geq 0]\), to separate the pre-existing differences from the post-treatment differences in the housing prices between the two locations. Some may argue that differences in housing prices could be driven by omitted and cofounding variables that are uncorrelated with the MRT stations. For example, local improvement programs in neighbourhoods may cause pre-existing changes in housing prices prior to the CCL MRT opening. We use an interaction term, “Treat \times Post”, which, if significant, should only be caused by the treatment effects specific to houses that are close to the new MRT stations; and the housing price trend in the treatment neighbourhood in the post-CCL opening periods should be different from the housing price trend in the control neighbourhood.
The diff-in-diff model for the log-housing price, which controls for both spatial (distance to new CCL stations) and temporal variations (before and after the opening of new CCL stations), is specified as follows:

\[
\ln P = \alpha + \beta_1 \times Post + \beta_2 \times Treat + \beta_3 \times (Treat \times Post) + H'\gamma + N'\theta + \varphi + \tau + \epsilon
\] (1)

where \(\ln P \) is the housing price in the log-term; \(H \) is a vector of housing characteristics, such as floor area, floor height, type, lease tenure type, and sale type; \(N \) is a vector of locational amenities, such as distances to CBD, top primary schools, bus stops, expressways, and major shopping malls; \(\varphi \) is the spatial fixed effects included to control for unobserved spatial features within the planning sector, represented by the first-digit of the postal code; and \(\tau \) is the time fixed effects that accounts for the quarter and the year temporal dynamics in the housing market. \(\beta_1, \beta_2, \beta_3, \gamma \) and \(\theta \) are estimated coefficient vectors, and \(\epsilon \) is an \(i.i.d. \) error term. We expect the coefficients \(\beta_3 \) to be significant and have a positive sign, if households capitalize the MRT accessibility benefits into housing prices after the new CCL MRT stations opening.

In the diff-in-diff approach, it is common for researchers to cluster unobserved variations within a small localized area using the spatial fixed effects. However, the recent literature has been increasingly concerned with non-stationarity caused by spatial interactions in the two adjacent neighbourhoods, one in the treatment and another in the control areas. Heckert and Mennis (2012) find significant spatial variations in the impact of Innovative Vacant Land Greening program on residential property values in Philadelphia, USA. In studying the public mass transit systems in Montreal, Canada, Dube et al. (2014) hypothesize that the expansion mass transit system could cut down car travel time, and also creates benefits that spill over to the adjacent neighborhoods that are not served by the system. This study is the closest to ours, but their results turned up to be insignificant. Anselin (1988); and Anselin and Arribas-Bel (2013) argue that failure to control for spatial dependence produces inefficient and biased estimates. Chagas et al. (2016) study the health effects caused by the field burning commonly practiced by the local to clear the access for sugarcane harvesting in Brazil; and they show that the health effect in the producing regions is 78% larger after taking account the spillover effects on the surrounding non-producing region.
Spatial dependence could exist in the dependent variable and/or the error term; the former indicates a possible spatial spillover or diffusion process – an event in a place predicts an increased likelihood of a correlated event occurring in a neighboring place; and the latter is caused by omitted covariates that are spatially correlated. In our study, we expect the neighbourhoods with the new MRT line to create spillover effects, either positively or negatively, onto the adjacent control neighbourhoods. The reduction in car travel time (Baum-Snow and Kahn, 2000) induces car-owning house owners with relatively lower MWTP for living near MRT stations to move out of the treatment zone (“push factor”) (Dube, et al., 2014). Likewise, households with relatively high MWTP for MRT convenience may move out of the neighborhoods not served by the CCL MRT stations into the neighborhoods near the CCL MRT stations (treatment) (“pull factor”).

In the Singapore’s context, the land value recapture strategy is used by the government through selling state lands near the MRT stations to private developers for housing and other development purposes; and the capital raised is usually channelled into a consolidated account that could be used to fund infrastructure projects including the construction of new MRT lines. Increases in land supply induced by the government’s land sales could be one source of spatially correlated errors that drives housing value near the MRT stations. The disproportionate increases in new housing supply in the area surrounding the MRT stations could create spatial non-stationarity, if not controlled for, could bias the estimation of the capitalization effects.

We introduce the third spatial innovation by incorporating a spatial lag term (SAC) (used to account for the spatially dependence responses) and a spatial error term (SARAR) (used to spatially dependence error) (Anselin, 1988) into the diff-in-diff model as in Equation (1). The spatial diff-in-diff (SDID) model with the SAC/SARAR structure could be represented as follows:

\[
\ln P = \rho W \ln P + X \eta + u \\
\text{u} = \lambda W u + \epsilon
\]

where \(W\) is a spatially weighted matrix that captures spatial relations with the ‘neighbourhood set’ for each observation. We adopt a distance-band-based neighbourhood specification, which assumes that there is no direct spatial influence between observations beyond a threshold distance (or bandwidth). We set the threshold distance at 1,060 m, which is the minimum distance to ensure that each property in our sample has at least one neighbour. \(X\) represents all the explanatory
variables in Equations 1; \(\eta \) is a coefficient vector of \(X \); \(\varepsilon \) is an i.i.d. error term; \(\rho \) and \(\lambda \) capture the spatial dependence effects in the dependent variable and the error term, respectively. For the SAC/SARAR model, we simultaneously and jointly incorporates a spatial lag and a spatial error in the model. If \(\rho = 0 \), it reduces to a spatial error model (SARAR); and likewise, if \(\lambda = 0 \), it reduces to a spatial lag model (SAC).

5. **Empirical Results**

5.1. **Impact of new MRT stations on housing prices**

We estimate the baseline diff-in-diff model to empirically test the impact of the new CCL MRT line opening on the non-land private housing values; and our estimated results are reported in Table 3. Columns 1 to 4 are models that use the 600m network distance as the cut-off to divide the sample area into a treatment zone and a control zone. Model 1 is the simplest baseline model with only the three variables: “Treat”, “Post”, and the interaction term “Treat \(\times \) Post”, and a constant term. Model 2 controls for housing-specific attributes (such as unit area, floor, property type, lease type), purchaser type, and sale type, and location-related amenities (such as distance to CBD, distance to top primary school, distance to bus stop, distance to expressway, and distance to major shopping malls). We cluster unobserved spatial and temporal dynamics in the housing prices by adding spatial fixed effects (using the 26 postal districts), and time fixed effects (using the 24 quarters in the transaction date) to Model 3. For Models 1 to 3, the study area is bounded by the 1,600 m buffer ring; and for Model 4, the study area is expanded by increasing the buffer ring to 2,000 m.

[Insert Table 3 here]

In Models 1 and 2, the coefficient on “Treat” is significant, but negative, where we do not control for both observed and unobserved variations in housing attributes and spatial heterogeneity, and the quarter of the transaction time effects. The negative “Treat” coefficient seems to be inconsistent with the predictive outcome indicating a price discount for non-landed private properties that are located within 600 m from the nearest CCL station by a network distance compared to houses in the control zone. The two other coefficients on “Post” and “Treat \(\times \) Post” have the expected sign, and are significant. The negative “Post” coefficient indicates that there was a general declining trend in housing price after 2011; and the positive interactive term “Treat \(\times \) Post” shows positive
capitalization effects (between 12.9% and 13.0%) for the treatment area relative to the control area reverting the general downward trend in the post-opening periods.

Column 3 show the results of a more robustly controlled Model 3, where the postal district and transaction quarter fixed effects are included; and the model’s R2 increases significantly to 0.916 from 0.771 and 0.824 in Models 1 and 2, respectively. The results show consistent signs for the three variables of interests: the “Treat” coefficient indicates a price premium of 2.5%, on average, for houses located within 600m (network distance) from the CCL MRT stations relative to other houses located outside the CCL zone; the “Post” coefficient indicates the same declining trend in non-landed housing prices in the study area after 2011; the diff-in-diff (“Treat × Post”) coefficient is highly significant at less than 1%, and indicates significant capitalization effects of 10.6% for non-landed houses located in the treatment zone relative to other control sample houses after the opening of the CCL stations. The results imply that the new CCL opening increases buyers’ MWTP for houses enjoying close proximity (600 m network distance) to CCL MRT stations; and similarly, people with lower than 10.6% MWTP for MRT accessibility are more likely to sell their houses and move to neighbourhoods outside the CCL treatment zone.

We conduct a robustness check by expanding the outer buffer ring of the study area from 1,600 m to 2,000 m from the closest CCL stations; and the expanded study area also increases the housing samples from 21,954 to 25,102. The estimation results are shown in Column 4 of Table 3. By expanding the study area, we find a weaker treatment effect of 9.1% compared to 10.6% found in Model 3 using sample houses in a smaller area (≤ 1,600 m radius). For comparison purposes, we also estimate a model that uses the 600m Euclidean distance in lieu of the network distance in identifying the treatment zone, and report the results in Column 5 of Table 3. Keeping with the same study boundary (≤ 1,600 m), the Euclidean distance of 600m, however, increases the treatment sample houses from 7,388 (Model 3) to 15,429 (Model 5); and we find that the interactive term is still significant, but the treatment effect reduces by 2.7% to 7.9% compared to the early network distance model (Column 3). The results imply that the use of Euclidean distance that ignores spatial and topographical constraints in the study area could wrongly include some sample houses into the treatment group, which could lead to under-estimation of the capitalization effects.

5.2. Capitalization Effects within the Treatment Zone
In Column 1 of Table 4, we explore spatial variations in prices within the treatment group by using only 7,388 sample houses within the network distance of 600m. The results show that the post-opening housing price trends in the area within 300m, "Treat_1", and the area from 300m to 600m, "Treat_2", from the closest MRT stations are significantly different. On average, the prices of houses in the inner ring of 300m of the CCL MRT stations are 2.7% higher than those located in the outer ring of 300m to 600m of the CCL MRT stations. The treatment effects as shown by the housing prices in the inner ring are also 4.7% higher than those in the outer ring of the treatment zone in the post-CCL opening period. The results are consistent with the graphical evidence estimated using LPR as in Figure 3, which affirm that the pre-existing and the post-CCL opening price gradients are non-linear within the treatment area that is 600m (by network distance) from the closest CCL MRT stations. The results verify the LPR estimated cut-off as a robust in delineating the impact zone of CCL stations.

[Insert Table 4 here]

In Column 2, we expand the baseline model (as in Column 3 of Table 3) by adding an additional distance dummy comprising transactions located in the region between 600m and 1000m (network distance) from the CCL stations, "Treat_3", and an interaction of the new distance dummy with the post-CCL station opening dummy, (Treat_3 × Post), to the diff-in-diff model. The results are consistent with the early findings confirming that houses within the 600m treatment zone in the post-CCL opening show significant price increases of 11.1% relative to houses in the control zone. We, however, do not find significant variations in housing prices between the area from 600m to 1,000m and the rest of the control zone (1,000m to 1,600m). The results imply that the cut-off network distance estimated by the LPR is robust, which cleanly captures the treatment effects in the study area that is bounded by the 1,600m radius from the MRT stations.

In Columns 3 and 4 of Table 4, we added the inner treatment ring dummy representing area within 300m network distance from the CCL stations, "Treat_1", to the baseline model (Column 3 of Table 3) and the extended model as in Column 2 of Table 4, respectively. The results again show significant variations in the treatment zone, where the inner ring (within 300m of the CCL zone, "Treat_1") show stronger housing price increases of between 12.5% (Model 3) and 12.9% (Model 4), compared to 7.5% and 8.0% increases in housing prices in the outer treatment zone (300m to
600m of the CCL zone, \("Treat2\)”). However, housing prices in the area just outside the treatment zone (600m to 1000m from the CCL stations, \("Treat3\)”) are insignificantly different from other area in the outer ring of the control zone (1,000m to 1,600m). The results again show significant variations in housing price trends within CCL impact zone; and a discrete treatment dummy variable could have had, otherwise, overestimated the treatment effects, if the non-linear effects are ignored.

5.3. Temporal Variations in Treatment Effects

Unlike the information on the arrival of a convicted sexual offender into a neighbourhood, which is rather discrete (Linden and Rockoff, 2008), an UTS and a MRT project usually take years to construct, and the progress during the construction period is usually visible to potential buyers and also households in the neighbourhood; and the date of completion is also made known to the public via the local media. Therefore, in our tests, it is hard to fully eliminate any prior reactions in housing markets in anticipating the opening of the new CCL line. Based on Figure 4, we could clearly see the divergence in prices between the treated and the untreated neighbourhoods occurring way before the opening of the CCL, based on the event dates. We test the “anticipation”

Unlike in the baseline diff-in-diff model, where the \("event date\)” is used to create exogenous shocks, however, we use “calendar date” dummy in our tests for temporal treatment effects. When we test for the “anticipation” effects, we set the date of the first phase opening of CCL lines as \([t=0]\), \("Post_0\)”, and use the two pre-CCL opening “calendar date” dummies to represent 6 months, \("Post_t-6\)”, and 12 months, \("Post_t-12\)”, respectively, before the opening of the CCL lines. This set up could mitigate possible correlated effects of the sequential opening of CCL events; and the results are summarized in Table 5.

[Insert Table 5 here]

The results show that the treatment effects that are brought forward are significant and positive at 16.6% for the 1-year pre-opening period, \("Post_t-12\)”, and 13.6% for the 6-month pre-CCL opening period, \("Post_t-6\)”. The results affirm the graphical evidence on the “anticipation” effects as shown in Figure 4. When we add the CCL opening event dummy, \("Post_{t=0}\)”, along with the 6-month pre-opening dummy, \("Post_t-6\)”, in Model 3, we find that though housing price premiums in the treatment
zone are significant and positive relative to the control zone in both the 6-month pre-opening and the post-opening periods; however, the “anticipation” effects of the CCL opening diminish from 9.8% to 6.4%, when houses are sold nearer to the opening of the CCL stations.

As the CCL line opens in three stages, we test the inter-temporal variations between different phases by using the “calendar date” dummies (Phase 1: 28 May 2009; Phase 2: 17 April 2010; Phase 3: 8 October 2011) in the diff-in-diff models, and use only sample that are close to the CCL stations open in different phases in our estimation (See Appendix 2). The results in Table 6 show that in the Phase 1 of the CCL with the opening of only 5 stations on the lines, the treatment effects are positive, but statistically insignificant; and the subsequent opening of other stations in the Phase 2 and Phase 3 show economically significant and positive treatment effects of 4.0% and 9.5%, respectively. The results seem to imply that most of the treatment effects found in the early models could be generated by the completion of the Phase 2 and Phase 3 of the CCL line, which allows more seamless connectivity for commuters along the CCL to other MRT lines.

[Insert Table 6 here]

5.4. Spatial-Dependence in Price Gradients
The OLS estimator assumes that the spatial structure remain statics in the “pre-existing” and the “post-treatment” periods, and we cluster the errors at the postal district level in the OLS-estimated diff-in-diff models discussed earlier. The static model reported in Column 1 of Table 7 (which is the same as the baseline Model 3 in Table 3) shows the treatment effects is 10.6%, which captures the price increases for houses with a network distance of less than 600m from the closest MRT stations relative to houses located outside the 600m accessibility range, in the post-CCL opening period.

[Insert Table 7 here]

In many recent spatial literature, the issues of spatial dynamics that allow for the inter-dependence of spatial structure between the treated zone and the untreated (control) zone, especially the spillover effects of the treatment to the contiguous control zones, could influence the causal inference. Like Heckert and Mennis (2012) and Dube, Legros, Theriault and Rosiers (2014), we
also account for spatial spillover effects in our model through the estimation of the spatial diff-in-diff (SDID) models. Columns 2 to 4 of Table 7 report the results of the three SDID models: SAC, SARAR and SAC/SARAR models. In the SAC-diff-in-diff and SARAR-diff-in-diff models, which incorporate the spatial lag of dependent variables, ρ, and the spatial error term, λ, respective, the treatment effects are though still statistically significant, but the magnitude of the post-CCL opening capitalization effects of the treated zone relative to the control zone decreases to 10.1% and 7.9%, respectively. When both spatial dependence parameters are jointly modelled in the SAC/SARAR-diff-in-diff model (Column 4), the treatment effect further reduces to 7.8% (Model 4). The results imply that spatial dependence are present in the form of both spatially clustered spillover effects across neighbouring housing units and spatial interdependencies among unobserved attributes. If the spatial autocorrelation in housing price appreciations between the treated zone and the control zone are ignored, we may have had overestimated the capitalization effects by 2.8%. The results provide new evidence to support the spatial literature that argues for the need to address spatial non-stationarity in the models. Our results add new evidence to the early study by Dube, Legros, Theriault and Rosiers (2014), which though finds no significant results when using the public mass transit system in Montreal, Canada, in the quasi-experiment.

5.5. Economic Benefits of the new CCL

Based on the static diff-in-diff Model in Column 1 of Table 7, we quantify the economic benefits associated with the new CCL opening through accrued housing value increases in the treatment zone. For a non-landed private housing unit located within the impact zone of the CCL with an average transaction price of S$1,192,170, the CCL-associated treatment effects of 10.6% are translated into an average price premium of S$126,370. In aggregate term, the realized economic benefits associated with the new CCL are estimated to be approximately S$474.52 million based only on the aggregate value of S$4.47 billion estimated from the 3,755 non-landed private housing transactions occurred in the impact zone after the new CCL opening. If the spatial dependence effects are accounted for, the economic gains from the CCL opening reduce, but still significant, to S$349.17 million.

The estimated economic benefit is thought estimated to be approximately 7.1% of the estimated total construction cost of S$6.67 billion for the CCL line. This may be considered only as the lower bound as we only consider the 3,755 transacted non-landed private housing after the post-CCL
opening. It should also be noted that the pre-announcement effect of the CCL is not captured in this study, which refers to the effect that households may pay a price premium for properties in the impact zone even prior to the opening of new CCL MRT stations in anticipation of future price appreciation. The actual capitalization effects could be much larger, if both the full housing stock along the CCL, the anticipative effects, and also spillovers to the control zone, if captured, are considered.

In the “Household Interview Travel Survey (HITS)” conducted by the LTA in 2012, the results show that over 77% of non-landed private housing owners living along the CCL own private cars; and the car ownership ratio in the CCL treatment area is disproportionately higher than the average national car ownership rate of approximately 10 private cars per 100 people. Zhu and Diao (2016) find that the opening of CCL increases the density of upper- and upper-middle-class car-owning households in non-landed private houses along the CCL corridor. However, they also find that wealthy households living near the CCL reduce their car dependence by switching to MRT after the opening of the CCL. The non-pecuniary benefits associated with the opening of the CCL may come in the form of the reduction in marginal social costs for car users on the congested road. Baum-Snow and Kahn (2000) observe the same switching behaviour of private car users in the US.

6. Conclusion
OLS-based diff-in-diff models are a popular tool used in many quasi-experiment settings to establish causal-effects of new UTS lines on housing values. The diff-in-diff models exploit cross-sectional and inter-temporal variations in housing price trends before and after the opening of new UTS lines controlling for spatial and time fixed effects. However, the static diff-in-diff models ignore topographical features and spatial autocorrelation structure in local areas, which may lead to over-estimation of treatment effects of new transport infrastructure on housing values.

In a quasi-experiment involving the opening of the new CCL MRT line in Singapore, this study applies three advances in spatial econometrics to address the issues of spatial dynamics and spatial dependence structure. First, we use the network distance, instead of the Euclidean distance, to measure the accessibility of houses to the closest MRT stations taking into consideration existing road networks in the study area. Second, we adopt the local-polynomial-regression (LPR) approach as in Linden and Rockoff (2008) to estimate the housing price gradients before and after the new
CCL station openings. We find that houses within 600m network distance to the closest CCL stations experienced significant price appreciation relative to houses outside the 600m zone. Based on the LPR-estimated cut-off network distance, we sort non-landed private housing samples into a treatment group and a control group to capture differential price dynamics in response to the new line opening events. Third, we estimate spatial diff-in-diff (SDID) models incorporated a spatial lag term (SAC), a spatial error term (SARAR) (used to spatially dependence errors), and both SAC/SARAR terms in the specification to assess the treatment effect of CCL.

Our results show that housing prices in the treatment zone increase by 10.6% relative to houses in the control zone after the opening of the CCL line using the static diff-in-diff models. The results are robust when we vary the study boundary from 1,600 m to 2,000m; and we also affirm that the treatment effects are non-linear with stronger treatment effects of 6.3% on houses located within the 300m zone, and 1.3% on houses located within the 600m zone (by network distance) from the closest MRT stations. We also find significant “anticipation” effects that appear as early as 12 months prior to the opening of the CCL line. When we use the “calendar dates” to separate the treatment effects for the three phases of CCL openings, we find significant positive treatment effects only in Phase 2 and Phase 3 of the CCL openings. The spatial autocorrelation and spillovers have also important impact on the treatment, if not controlled for could lead to over-estimation of the treatment effects. In our SDID model with the incorporation of both the SAC and the SARAR terms, we find that the treatment effects are significant, but the magnitude reduces by 2.8% to 7.8%. This treatment effect is translated into economic gains of S$349.17 million in the private non-landed housing markets.

Our findings reinforce the results in the earlier literature showing significant housing price capitalization effects associated with public transport infrastructure investments. In our paper, we introduce new spatial innovations to explicitly control for spatial dynamics, in order to provide more reliable estimates of the capitalization effect of new urban RTS lines. The inter-dependence structure between the treatment zone and the control zone imply that new UTS lines may bring differential economic benefits to different neighbourhoods. For example, in Singapore’s context, if the new CCL line could induce more car owning upper- or upper-middle-income private households to switch to using MRT services, the new CCL could generate spatial spillovers in terms of reduced congestion on the roads in the control neighbourhoods not served by the CCL.
line. Therefore, understanding the spatial dynamics associated with the new UTS infrastructure investments contributes to more informed policy design for value capture programs for urban planners, which may otherwise have had been neglected in the conventional cross-sectional analyses.
References

Table 1 Existing and planned MRT lines in Singapore

<table>
<thead>
<tr>
<th>MRT Line</th>
<th>Operator</th>
<th>MRT Line in Operation</th>
<th>Under Construction and Planning</th>
<th>Total length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number of Station</td>
<td>Length (km)</td>
<td></td>
</tr>
<tr>
<td>North South Line</td>
<td>SMRT Trains</td>
<td>26</td>
<td>44.7</td>
<td>44.7</td>
</tr>
<tr>
<td>East West Line</td>
<td>SMRT Trains</td>
<td>31</td>
<td>49.7</td>
<td>57.2</td>
</tr>
<tr>
<td>Northeast Line</td>
<td>SBS Transit</td>
<td>16</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Circle Line</td>
<td>SMRT Trains</td>
<td>30</td>
<td>35.4</td>
<td>35.4</td>
</tr>
<tr>
<td>Downtown Line</td>
<td>SBS Transit</td>
<td>18</td>
<td>20.9</td>
<td>44.1</td>
</tr>
<tr>
<td>Thomson-East Cost</td>
<td>TBA</td>
<td>31</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Island Line</td>
<td>TBA</td>
<td>-</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Jurong Regional</td>
<td>TBA</td>
<td>-</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>121</td>
<td>170.7</td>
<td>316.4</td>
</tr>
</tbody>
</table>

		Number of station	Length (km)	
		1	0	2019
		4	7.5	2017 (Tuas West Extension)
		1	2	2030
		18	23.2	2017 (Stage 3) / 2024*
		31	43	2019*
		-	50	2030*
		-	20	2025*

		55	145.7	
				316.4

Notes: The table summarizes the details of the MRT lines in operation, under construction and planning in Singapore. The data are obtained from various sources including LTA, Wikipedia, and newspapers. * represents the opening year of the first stage of corresponding MRT line, based on projects.
Table 2 Descriptive statistics

<table>
<thead>
<tr>
<th>Observation</th>
<th>Full Sample</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Linear group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Network Distance ≤600m</td>
<td>Network Distance >600m</td>
<td>Linear Distance ≤600m</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
<td>S. D.</td>
</tr>
<tr>
<td>Price per housing unit (S)</td>
<td>1,402,168</td>
<td>985,590</td>
<td>1,192,170</td>
<td>620,144</td>
</tr>
<tr>
<td>Price per square metre (S/m²)</td>
<td>12,234</td>
<td>3,971</td>
<td>11,693</td>
<td>3,361</td>
</tr>
<tr>
<td>Ln Price</td>
<td>13.999</td>
<td>0.552</td>
<td>13.895</td>
<td>0.435</td>
</tr>
<tr>
<td>Ln Floor Area</td>
<td>4.640</td>
<td>0.492</td>
<td>4.572</td>
<td>0.435</td>
</tr>
<tr>
<td>Property Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment</td>
<td>0.371</td>
<td>0.483</td>
<td>0.397</td>
<td>0.489</td>
</tr>
<tr>
<td>Condominium</td>
<td>0.623</td>
<td>0.485</td>
<td>0.603</td>
<td>0.489</td>
</tr>
<tr>
<td>Executive Condominium</td>
<td>0.006</td>
<td>0.078</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Lease Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freehold</td>
<td>0.512</td>
<td>0.500</td>
<td>0.349</td>
<td>0.477</td>
</tr>
<tr>
<td>Leasehold</td>
<td>0.488</td>
<td>0.500</td>
<td>0.651</td>
<td>0.477</td>
</tr>
<tr>
<td>Purchaser Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDB</td>
<td>0.323</td>
<td>0.468</td>
<td>0.342</td>
<td>0.475</td>
</tr>
<tr>
<td>Private</td>
<td>0.677</td>
<td>0.468</td>
<td>0.658</td>
<td>0.475</td>
</tr>
<tr>
<td>Sale Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Sale</td>
<td>0.512</td>
<td>0.500</td>
<td>0.534</td>
<td>0.499</td>
</tr>
<tr>
<td>Sub Sale</td>
<td>0.082</td>
<td>0.275</td>
<td>0.088</td>
<td>0.284</td>
</tr>
<tr>
<td>Resale</td>
<td>0.406</td>
<td>0.491</td>
<td>0.378</td>
<td>0.485</td>
</tr>
<tr>
<td>Network Distance to MRT (m)</td>
<td>803,193</td>
<td>397,163</td>
<td>376,064</td>
<td>149,674</td>
</tr>
<tr>
<td>Euclidean Distance to MRT (m)</td>
<td>490,773</td>
<td>309,308</td>
<td>219,997</td>
<td>111,977</td>
</tr>
<tr>
<td>Distance to School (m)</td>
<td>1,667,153</td>
<td>688,148</td>
<td>1,528,906</td>
<td>702,179</td>
</tr>
<tr>
<td>Distance to CBD (m)</td>
<td>6,014,183</td>
<td>1,647,860</td>
<td>6,280,275</td>
<td>1,509,667</td>
</tr>
<tr>
<td>Distance to Expressway (m)</td>
<td>1,111,423</td>
<td>663,418</td>
<td>1,091,656</td>
<td>553,056</td>
</tr>
<tr>
<td>Distance to Bus Stop (m)</td>
<td>157,840</td>
<td>97,852</td>
<td>135,459</td>
<td>67,821</td>
</tr>
<tr>
<td>Distance to Mall (m)</td>
<td>1,834,797</td>
<td>880,697</td>
<td>1900,909</td>
<td>895,742</td>
</tr>
</tbody>
</table>

Note: The table shows the descriptive statistics (means and standard deviation (S.D.)) for the full sample, the treatment (≤600m) and the control sub-sample (>600m), based on the network distance measures, and the sub-sample based on linear distance of ≤ 600m. The data contain the price variables, housing attributes, lease type, sale type, distance measures and other spatial attributes.
Table 3 Results of Diff-in-Diff Models

<table>
<thead>
<tr>
<th>Treatment measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study boundary</td>
<td>1.6km</td>
<td>1.6km</td>
<td>1.6km</td>
<td>2.0km</td>
<td>1.6 km</td>
</tr>
<tr>
<td>Within 600 m of CCL station</td>
<td>-0.115</td>
<td>***</td>
<td>-0.081</td>
<td>***</td>
<td>0.025</td>
</tr>
<tr>
<td>(0.005)</td>
<td></td>
<td></td>
<td>(0.005)</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Within 600 m of CCL station × Post Operation</td>
<td>0.129</td>
<td>***</td>
<td>0.130</td>
<td>***</td>
<td>0.106</td>
</tr>
<tr>
<td>(0.008)</td>
<td></td>
<td></td>
<td>(0.007)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Post operation</td>
<td>-0.077</td>
<td>***</td>
<td>-0.032</td>
<td>***</td>
<td>-0.037</td>
</tr>
<tr>
<td>(0.005)</td>
<td></td>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>(0.019)</td>
<td></td>
<td></td>
<td>(0.020)</td>
<td></td>
<td>(0.022)</td>
</tr>
<tr>
<td>Structural characteristics</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Neighborhood characteristics</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Postal district fixed effect</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Transaction quarter fixed effect</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>21,954</td>
<td>21,954</td>
<td>21,954</td>
<td>25,102</td>
<td>21,954</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.7705</td>
<td>0.8245</td>
<td>0.9160</td>
<td>0.9122</td>
<td>0.9129</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.7704</td>
<td>0.8244</td>
<td>0.9158</td>
<td>0.9119</td>
<td>0.9126</td>
</tr>
</tbody>
</table>

Notes: The table reports the results for the regressions with log-transaction price as the dependent variable. Models 1 to 3 and Model 5 are estimated using the sample of non-landed private housing units within 1,600m network distance from the closest CCL stations, and Model 4 uses a large study boundary demarcated by the network distance of 2,000m. In the models, the treatment variable is defined by the 600m network distance from the CCL stations; “Post operation” is a time dummy that has a value of 1, if a transaction occurs after the CCL in operation; and 0 otherwise. The interactive variable: “Within 600 m of CCL station × Post operation” capture the treatment effect of the CCL on property values. We include other covariates such as housing attributes (log of floor area, floor level, and dummies on property type), lease type, purchaser type, and sale type. Neighbourhood characteristics include distance to CBD, distance to the nearest top primary school, distance to shopping mall, distance to bus stop and distance to the expressway. The quarter of the year and postal fixed effects are included in the model, where the data consist of 24 quarters and 25 postal districts. Standard errors are in parentheses. ***p <0.001; **p < 0.01; *p < 0.05.
Table 4 Robustness Tests: Network Distance and Local Polynomial Effects

<table>
<thead>
<tr>
<th>Study boundary</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat(0-300m)</td>
<td>0.027</td>
<td>0.063</td>
<td>0.061</td>
<td>*0.061</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Treat(300-600m)</td>
<td>0.013</td>
<td>0.010</td>
<td>0.010</td>
<td>*0.010</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Treat(0-600m)</td>
<td>0.025</td>
<td>*0.063</td>
<td>*0.061</td>
<td>*0.061</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Treat(600-1000m)</td>
<td>0.000</td>
<td>-0.005</td>
<td>-0.005</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Interactive variable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treat(0-300m) × Post operation</td>
<td>0.047</td>
<td>*0.125</td>
<td>*0.129</td>
<td>*0.129</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Treat(300-600m) × Post operation</td>
<td>0.075</td>
<td>*0.080</td>
<td>*0.080</td>
<td>*0.080</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Treat(0-600m) × Post operation</td>
<td>0.111</td>
<td>*0.125</td>
<td>*0.129</td>
<td>*0.129</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Treat(600-1000m) × Post operation</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Post operation</td>
<td>-0.036</td>
<td>*-0.042</td>
<td>*-0.032</td>
<td>*-0.037</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Post operation</td>
<td>10.020</td>
<td>*10.260</td>
<td>*10.260</td>
<td>*10.260</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.023)</td>
<td>(0.023)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Constant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Structural characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Neighborhood characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Postal district fixed effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Transaction quarter fixed effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7,388</td>
<td>21,954</td>
<td>21,954</td>
<td>21,954</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.9193</td>
<td>0.9160</td>
<td>0.9172</td>
<td>0.9172</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.9187</td>
<td>0.9158</td>
<td>0.9170</td>
<td>0.9170</td>
</tr>
</tbody>
</table>

Notes: The table reports the results for the regressions with log-transaction price as the dependent variable. The Models are estimated using the sample of non-landed private housing units within 1,600m network distance from the closest CCL stations. In the models, the treatment variable is defined by different network distances from the CCL stations, “Treat(k)”, where \([k = (0-300m, 300-600m, 0-600m and 600-1000m)]\); “Post operation” is a time dummy that has a value of 1, if a transaction occurs after the CCL in operation; and 0 otherwise. The interactive variables: “Treat(k) × Post operation” capture the treatment effect of the CCL on property values. We include other covariates such as housing attributes (log of floor area, floor level, and dummies on property type), lease type, purchaser type, and sale type. Neighbourhood characteristics include distance to CBD, distance to the nearest top primary school, distance to shopping mall, distance to bus stop and distance to the expressway. The quarter of the year and postal fixed effects are included in the model, where the data consist of 24 quarters and 25 postal districts. Standard errors are in parentheses. ***p <0.001; **p < 0.01; *p < 0.05.
Table 5 Tests of “Anticipation” Effects of the CCL Opening

<table>
<thead>
<tr>
<th>Sample period</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within 600 m of CCL station</td>
<td>-0.064</td>
<td>***</td>
<td>-0.033</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.006)</td>
</tr>
<tr>
<td>Post<sub>t-12</sub></td>
<td>-0.061</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post<sub>t-6</sub></td>
<td></td>
<td>-0.225</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.026)</td>
<td></td>
</tr>
<tr>
<td>Post<sub>t=0</sub></td>
<td></td>
<td></td>
<td>-0.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Within 600 m of CCL station × Post<sub>t-12</sub></td>
<td>0.166</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within 600 m of CCL station × Post<sub>t-6</sub></td>
<td>0.136</td>
<td>***</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>(?)</td>
<td></td>
<td>(?)</td>
</tr>
<tr>
<td>Within 600 m of CCL station × Post<sub>t=0</sub></td>
<td>0.064</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>10.310</td>
<td>***</td>
<td>10.290</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td></td>
<td>(0.022)</td>
</tr>
<tr>
<td>Structural characteristics</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Neighborhood characteristics</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Postal district fixed effect</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Transaction quarter fixed effect</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>21,954</td>
<td></td>
<td>21,954</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.9168</td>
<td></td>
<td>0.9165</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.9166</td>
<td></td>
<td>0.9163</td>
</tr>
</tbody>
</table>

Notes: The table reports the results for the regressions with log-transaction price as the dependent variable. The Models are estimated using the sample of non-landed private housing units within 1,600m network distance from the closest CCL stations. In the models, the treatment variable is defined by the 600m network distance from the CCL stations; “Post_{t=0}” is a time dummy that indicate the opening of Phase 1 of the CCL in May 2009. For the tests of “anticipation” effects, we include two other time dummies: “Post_{t-12}” and “Post_{t-6}”, which represent the 12 months and 6 months pre-CCL Phase 1 opening event dates, respectively. The interactive variable: “Within 600 m of CCL station × Post_{t-k}”, where k=(0, 6, 12), capture the treatment effect of the CCL on property values. We include other covariates such as housing attributes (log of floor area, floor level, and dummies on property type), lease type, purchaser type, and sale type. Neighbourhood characteristics include distance to CBD, distance to the nearest top primary school, distance to shopping mall, distance to bus stop and distance to the expressway. The quarter of the year and postal fixed effects are included in the model, where the data consist of 24 quarters and 25 postal districts. Standard errors are in parentheses. ***p <0.001; **p < 0.01; *p < 0.05.
Table 6 Tests of “Calendar Date” Effects with Different Phases of Opening of CCL

<table>
<thead>
<tr>
<th>Treatment measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study boundary</td>
<td>1.6km</td>
<td>1.6km</td>
<td>1.6km</td>
</tr>
<tr>
<td>CCL Operation Phase</td>
<td>Phase 1</td>
<td>Phase 2</td>
<td>Phase 3</td>
</tr>
<tr>
<td>Within 600 m of CCL station</td>
<td>0.022 **</td>
<td>0.031 ***</td>
<td>-0.025 ***</td>
</tr>
<tr>
<td>(0.008)</td>
<td>(0.007)</td>
<td>(0.020)</td>
<td></td>
</tr>
<tr>
<td>Within 600 m of CCL station × Post Operation</td>
<td>0.002</td>
<td>0.040 ***</td>
<td>0.095 ***</td>
</tr>
<tr>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.009)</td>
<td></td>
</tr>
<tr>
<td>Post operation</td>
<td>0.088 ***</td>
<td>-0.014</td>
<td>-0.001</td>
</tr>
<tr>
<td>(0.016)</td>
<td>(0.018)</td>
<td>(0.043)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>10.360 ***</td>
<td>9.356 ***</td>
<td>10.310 ***</td>
</tr>
<tr>
<td>(0.072)</td>
<td>(0.037)</td>
<td>(0.036)</td>
<td></td>
</tr>
<tr>
<td>Structural characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Neighborhood characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Postal district fixed effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Transaction quarter fixed effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>4,975</td>
<td>7,900</td>
<td>9,079</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.9177</td>
<td>0.9270</td>
<td>0.9203</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.9170</td>
<td>0.9266</td>
<td>0.9199</td>
</tr>
</tbody>
</table>

Notes: The table reports the results for the regressions with log-transaction price as the dependent variable. The models are estimated using the sample of non-landed private housing units within 1,600m network distance from the closest CCL stations. In the models, the treatment variable is defined by the 600m network distance from the CCL stations; “Post operation” is a time dummy that has a value of 1, if a transaction occurs after the CCL in operation; and 0 otherwise. The interactive variable: “Within 600 m of CCL station × Post operation” capture the treatment effect of the CCL on property values. We separately test the events using the opening of the 3 different phases of CCL in the tests (Phase 1: 28 May 2009; Phase 2: 17 April 2010; Phase 3: 8 October 2011). We include other covariates such as housing attributes (log of floor area, floor level, and dummies on property type), lease type, purchaser type, and sale type. Neighbourhood characteristics include distance to CBD, distance to the nearest top primary school, distance to shopping mall, distance to bus stop and distance to the expressway. The quarter of the year and postal fixed effects are included in the model, where the data consist of 24 quarters and 25 postal districts. Standard errors are in parentheses. ***p <0.001; **p < 0.01; *p < 0.05.
Table 7 Spatial Dependence Diff-in-Diff (SDID) Models

<table>
<thead>
<tr>
<th></th>
<th>0 OLS</th>
<th>1 SAC</th>
<th>2 SARAR</th>
<th>3 SAC/SARAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within 600 m of CCL station</td>
<td>0.025</td>
<td>0.031</td>
<td>0.025</td>
<td>0.021</td>
</tr>
<tr>
<td>(0.004)</td>
<td></td>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Within 600 m of CCL station * Post Operation</td>
<td>0.106</td>
<td>0.101</td>
<td>0.079</td>
<td>0.078</td>
</tr>
<tr>
<td>(0.005)</td>
<td></td>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Post operation</td>
<td>-0.037</td>
<td>-0.028</td>
<td>-0.015</td>
<td>** -0.017</td>
</tr>
<tr>
<td>(0.005)</td>
<td></td>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Constant</td>
<td>10.270</td>
<td>5.208</td>
<td>8.368</td>
<td>11.006</td>
</tr>
<tr>
<td>(0.022)</td>
<td></td>
<td></td>
<td>(2.112)</td>
<td>(2.135)</td>
</tr>
<tr>
<td>Rho (spatial lag of dependent variable)</td>
<td>0.342</td>
<td></td>
<td></td>
<td>-0.192</td>
</tr>
<tr>
<td>(0.037)</td>
<td></td>
<td></td>
<td>(0.025)</td>
<td></td>
</tr>
<tr>
<td>Lambda (spatial error)</td>
<td></td>
<td></td>
<td></td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>Structural characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Neighborhood characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Postal district fixed effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Transaction quarter fixed effect</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>21,954</td>
<td>21,954</td>
<td>21,954</td>
<td>21,954</td>
</tr>
<tr>
<td>AIC</td>
<td>-18,045</td>
<td>-18,811</td>
<td>-19,927</td>
<td>-20,005</td>
</tr>
</tbody>
</table>

Notes: The table reports the results for the regressions with log-transaction price as the dependent variable. The Models are estimated using the sample of non-landed private housing units within 1,600m network distance from the closest CCL stations. In the models, the treatment variable is defined by the 600m network distance from the CCL stations; “Post operation” is a time dummy that has a value of 1, if a transaction occurs after the CCL in operation; and 0 otherwise. The interactive variable: “Within 600 m of CCL station × Post operation” capture the treatment effect of the CCL on property values. We include other covariates such as housing attributes (log of floor area, floor level, and dummies on property type), lease type, purchaser type, and sale type. Neighbourhood characteristics include distance to CBD, distance to the nearest top primary school, distance to shopping mall, distance to bus stop and distance to the expressway. The quarter of the year and postal fixed effects are included in the model, where the data consist of 24 quarters and 25 postal districts. Model 1 is estimated using OLS estimator; Model 2 include a spatial lag variable (SAC); Model 3 include a spatial error term (SARAR), and Model 4 include both SAC and SARAR. Standard errors are in parentheses. ***p <0.001; **p < 0.01; *p < 0.05.
Fig. 1. MRT Network and Non-Landed Private Housing Transactions

Note: The Figure shows the map of Singapore, and the darken solid (red line) shows the Circle line MRT stations on the line are represented by dot (en-route stations) and star (interchange stations); and the light green dot represent the distributions of housing samples along the Circle Line.
Fig. 2. Network distance and Euclidean distance

Note: The figure uses a sample house located at 107 Aljunied Crescent to illustrate the different between the Euclidean distance (dotted line) and the network distance (solid green line) to the closest MacPherson MRT Station.
Fig. 3. Change of housing price gradients of network distance to CCL stations before and after CCL in operation

Note: The figure plots the log-housing price per square meter (S$/psm) against the network distance to the closest MRT stations. The solid line represents the housing price gradient after the CCL opening, and the dashed line represent housing price gradient before the CCL opening.
Fig. 4. Temporal changes of unit price in the treatment and control zones

Note: the Figure plots the price gradients (by log-unit housing price) for the two sets of sample houses, which include the treatment sample (within 600m from the CCL stations) (solid line) and the control sample (beyond 600m from the CCL stations) (dashed line), over time (by month from March 2007) (represented by the X-axis). The three vertical lines represent the opening of the CCL in three different phases.
Appendix 1: Local Polynomial Regression (LPR)

Local polynomial regression is a nonparametric regression method widely applied to smooth scatterplot without making assumptions about the functional form of the expected value of a response to a given regressor. It involves fitting the response to a polynomial form of the regressor via locally weighted least squares.

Consider a set of scatterplot data \{(x_1, y_1), \ldots, (x_n, y_n)\} from the model:

\[y_i = m(x_i) + \sigma(x_i) \varepsilon_i \]

for some unknown mean and variance functions \(m(\cdot)\) and \(\sigma^2(\cdot)\), and symmetric errors \(\varepsilon_i\) with \(E(\varepsilon_i) = 0\) and \(Var(\varepsilon_i) = 1\). The goal is to estimate \(m(x_0) = E[Y|X = x_0]\), making no assumptions about the functional form of \(m(\cdot)\). Local polynomial regression estimate \(m(x_0)\) as the constant term (intercept) of regression, weighted by the kernel function, of \(y\) on the polynomial terms \((x - x_0), (x - x_0)^2, \ldots, (x - x_0)^p\) for each smoothing point \(x_0\).

Appendix 2: MRT Stations on the Circle Line

<table>
<thead>
<tr>
<th>No</th>
<th>Name of Station</th>
<th>MRT Station Code</th>
<th>Interchange Code</th>
<th>Connecting to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bartley</td>
<td>CC12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Serangoon</td>
<td>CC13</td>
<td>NE12 / CC13</td>
<td>North-East Line</td>
</tr>
<tr>
<td>3</td>
<td>Lorong Chuan</td>
<td>CC14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bishan</td>
<td>CC15</td>
<td>NS17 / CC15</td>
<td>North-South Line</td>
</tr>
<tr>
<td>5</td>
<td>Marymount</td>
<td>CC16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 1 (Opening Date: 28 May 2009)

<table>
<thead>
<tr>
<th>No</th>
<th>Name of Station</th>
<th>MRT Station Code</th>
<th>Interchange Code</th>
<th>Connecting to</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Dhoby Ghaut</td>
<td>CC1</td>
<td>NS24 / NE6 / CC1</td>
<td>North-South/North-East Lines</td>
</tr>
<tr>
<td>7</td>
<td>Bras Basah</td>
<td>CC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Esplanade</td>
<td>CC3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Nicoll Highway</td>
<td>CC5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Stadium</td>
<td>CC6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mountbatten</td>
<td>CC7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Dakota</td>
<td>CC8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Paya Lebar</td>
<td>CC9</td>
<td>EW8 / CC9</td>
<td>East-West Line</td>
</tr>
<tr>
<td>14</td>
<td>Macpherson</td>
<td>CC10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Tai Seng</td>
<td>CC11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 2 (Opening Date: 17 April 2010)

<table>
<thead>
<tr>
<th>No</th>
<th>Name of Station</th>
<th>MRT Station Code</th>
<th>Interchange Code</th>
<th>Connecting to</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Caldecott</td>
<td>CC17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Bukit Brown*</td>
<td>CC18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Botanic Gardens</td>
<td>CC19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Farrer Road</td>
<td>CC20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Holland Village</td>
<td>CC21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Buona Vista</td>
<td>CC22</td>
<td>CC22/EW21</td>
<td>East-West Line</td>
</tr>
<tr>
<td>22</td>
<td>One North</td>
<td>CC23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Kent Ridge</td>
<td>CC24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Haw Par Villa</td>
<td>CC25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Pasir Panjlang</td>
<td>CC26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Labrador</td>
<td>CC27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Telok Blangah</td>
<td>CC28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Harborfront</td>
<td>CC29</td>
<td>CC29/NE1</td>
<td>North-East line</td>
</tr>
</tbody>
</table>

Phase 3 (Opening Date: 8 October 2011)

<table>
<thead>
<tr>
<th>No</th>
<th>Name of Station</th>
<th>MRT Station Code</th>
<th>Interchange Code</th>
<th>Connecting to</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Marina Bay</td>
<td>CC30</td>
<td>NS27 / CE2 / TS20</td>
<td>North-South Line/Terminal</td>
</tr>
<tr>
<td>30</td>
<td>Bayfront</td>
<td>CE1</td>
<td>CE1/DT16</td>
<td>Terminal / Downtown Line</td>
</tr>
</tbody>
</table>

Circle Line Extension (14 January 2012)

<table>
<thead>
<tr>
<th>No</th>
<th>Name of Station</th>
<th>MRT Station Code</th>
<th>Interchange Code</th>
<th>Connecting to</th>
</tr>
</thead>
</table>

Note: The stations in the Circle Line Extension opened on 14 January 2012 are not included in the study. # Bukit Brown station is also closed and reserved for future operation, and not included in our study. There are 3 more new stations being planned on the CCL (Keppel, Cantoment, and Prince Edward); and construction is scheduled to start in 2018, and the stations will open in 2025, which will complete the loop of CCL upon completion.

42