Are Estimates of Rapid Growth in Urban Land Values an Artifact of the Land Residual Model?

John Clapp Jeffrey Cohen Thies Lindenthal

David C. Lincoln Fellowship Symposium, Jan 28, 2021

Our (Re)definition of Urban Land Value

- If a usable structure is present, urban land value is the value at the time a structure was built adjusted for changes in property value over time and adjusted for additional value from possible demolition, renovation or redevelopment of the structure.
- A possible change in the structure means legally, physically and financially feasible now or at some future time.
- This definition is intended to apply to the vast majority of urban land which has substantial usable structures present.

This Paper in a Nutshell

- Land valuation methods based on irreversibility are compared to
 - valuations based on vacant land sales and on
 - land residual methods (land value equals property value minus the depreciated cost to build)
- Both methods are nested in our option value model.
- Land residual theory holds as a special case when the redevelopment option is exercised.
- The large and influential land residual literature ignores this restriction, even when it takes a 10-year-old property as "new," ignoring changes in property value over the 10 years.
- The irreversibility assumption predicts that high urban land volatility and land value ("LV") ratios that increase (decrease) substantially during a boom (bust) are artifacts of the land residual method.

"small", older structure, not fully obsolete

Key Findings

- We fit all three methods to Maricopa County assessor data during a recovery period (2012-2018).
- It remains difficult to use vacant land transactions to value land under existing structures
 - Are they real comparables? Probably not.
- Results show that the LV ratio (land value to total property value) behaves as predicted by irreversibility, not by the land residual or vacant land methods.
 - New CAMA assessment procedures should consider irreversibility, using land residual estimates at time of construction.

Irreversibility and Land Value Suggesting a Simple Options Model

- Our model is designed to provide intuition for empirical work on the land value ratio.
- Since it is about intuition, we keep the math simple
 - e.g. Baseline has no uncertainty in the value of the underlying. Then we add uncertainty.
 - We use a simple linear production function that delivers intuition.
- The model may be compared to work in Section 2 of Davis et al. (2019)

Production function For a fully built-up inner suburban neighborhood

• Each unit of housing (H) delivers one unit of services per time period:

• This avoids a problem with the more typical Cobb-Douglas production function: the implausible assumption of constant land share in the production process

Land share in production = aL/(aL+bS)

• Demand: **p** = Rent/intensity

$$\frac{Rent}{H} = p \frac{S^{-c}}{L}, \text{ given } 0 < c < 1$$

• Multiply, capitalize with *r* :

$$P(H)H = \left(\frac{p}{r}\right)aS^{-c} + \left(\frac{p}{r}\right)b\left(\frac{S^{1-c}}{L}\right)$$

Building Costs

... are a percentage of the value per unit intensity

• The cost to build a unit of structure is some percentage, *k* of the value per unit intensity, and total costs increase with the amount of structure:

Building costs =
$$\left(\frac{p}{r}\right)kS^d$$
, given $0 < k < 1, d > 0$.

As if vacant land value

- •V* is the land residual value at the point of reconstruction: i.e., after the existing structure becomes valueless and it has been demolished
- Land value is function of the highest and best use, which is the structure size S*
- The exchange of old S for S* occurs when the economic value of S=0, despite replacement value>0

$$V^* = \left(\frac{p}{r}\right) \{aS^{*(-c)} + b\left(\frac{S^{*(1-c)}}{L}\right) - kS^{*d}\}$$

Numerical Example Structure between 1 and 18 (=optimal S*)

Data and empirical setup

- Geographic focus on Market 5
- Focus on boom, 2012-2018 corresponding to the positive shock innumerical solutions.
- Exploit the richness of hedonic variables
- Add GIS based distance measures and elevation dummy for hill locations to better capture location
- Depreciated cost to replace structure in year of sale from our CAMA adaptation of Marshall cost manuals.

Hedonic estimates look good Expected signs for location- and structure-related vars.

Dependent Var.	Price	Land Val.	Price	Price
Land (sf)	-0.042***	-0.035***		-0.037***
Square root Land (sf)	0.854***	0.718***		0.755***
Dist. CBD	0.013	-0.001		0.003
Dist. primary road	0.000	0.006		0.005
Dist. secondary road	0.046	0.057		0.054
Dist. Parks	0.109	0.104		0.105
Dist. Water	-0.404**	-0.432**		-0.424**
Cul-de-sac	-0.105	-0.092		-0.095
Green belt	0.264***	0.216***		0.229***
Golf	0.674**	0.761**		0.738**
High elev.	0.496***	0.418***		0.439***
Dummy: neg. value	-0.381***	-0.382***		-0.381***
Interior space (sf)	1.226***	0.489***		0.689***
Prop. Age	-0.043***	-0.027***		-0.031***
Prop. quality=4	-0.001	-0.080		-0.058
Prop. quality=5	0.762***	-0.136		0.107
Prop. quality=6	1.963***	-0.069		0.482*
Pool	0.188***	-0.028		0.031
Depreciated cost to replace structure			1.261***	0.729***
Hedonic predictions for land residuals			0.908***	
Location, year and deed type controls	Yes	Yes	Yes	Yes
R-squared	0.814	0.656	0.800	0.819

Land residual value = Price – Repl. Cost Constraining the coeff. on Repl. cost to 1

Dependent Var.	Price	Land Val.	Price	Price
Land (sf)	-0.042***	-0.035***		-0.037***
Square root Land (sf)	0.854***	0.718***		0.755***
Dist. CBD	0.013	-0.001		0.003
Dist. primary road	0.000	0.006		0.005
Dist. secondary road	0.046	0.057		0.054
Dist. Parks	0.109	0.104		0.105
Dist. Water	-0.404**	-0.432**		-0.424**
Cul-de-sac	-0.105	-0.092		-0.095
Green belt	0.264***	0.216***		0.229***
Golf	0.674**	0.761**		0.738**
High elev.	0.496***	0.418***		0.439***
Dummy: neg. value	-0.381***	-0.382***		-0.381***
Interior space (sf)	1.226***	0.489***		0.689***
Prop. Age	-0.043***	-0.027***		-0.031***
Prop. quality=4	-0.001	-0.080		-0.058
Prop. quality=5	0.762***	-0.136		0.107
Prop. quality=6	1.963***	-0.069		0.482*
Pool	0.188***	-0.028		0.031
Depreciated cost to replace structure			1.261***	0.729***
Hedonic predictions for land residuals			0.908***	
Location, year and deed type controls	Yes	Yes	Yes	Yes
R-squared	0.814	0.656	0.800	0.819

Price = Land value + structure value? Coeff. on replication cost > 1

Dependent Var.	Price	Land Val.	Price	Price
Land (sf)	-0.042***	-0.035***		-0.037***
Square root Land (sf)	0.854***	0.718***		0.755***
Dist. CBD	0.013	-0.001		0.003
Dist. primary road	0.000	0.006		0.005
Dist. secondary road	0.046	0.057		0.054
Dist. Parks	0.109	0.104		0.105
Dist. Water	-0.404**	-0.432**		-0.424**
Cul-de-sac	-0.105	-0.092		-0.095
Green belt	0.264***	0.216***		0.229***
Golf	0.674**	0.761**		0.738**
High elev.	0.496***	0.418***		0.439***
Dummy: neg. value	-0.381***	-0.382***		-0.381***
Interior space (sf)	1.226***	0.489***		0.689***
Prop. Age	-0.043***	-0.027***		-0.031***
Prop. quality=4	-0.001	-0.080		-0.058
Prop. quality=5	0.762***	-0.136		0.107
Prop. quality=6	1.963***	-0.069		0.482*
Pool	0.188***	-0.028		0.031
Depreciated cost to replace structure			1.261***	0.729***
Hedonic predictions for land residuals			0.908***	
Location, year and deed type controls	Yes	Yes	Yes	Yes
R-squared	0.814	0.656	0.800	0.819

Wedge: Small, old buildings

• Remaining structure valued less by market than by land residual, as predicted by option value model

Dependent Var.	Price	Price	Price
Hedonic, location, year and deed type co	Yes	Yes	Yes
Small old structure=1	1.245***	0.412*	0.586**
Interior space (sf)	1.258***		0.699***
<pre># Small old structure=1</pre>	-0.625***		
Depreciated cost to replace structure in			
year of sale		1.239***	0.721***
# Small old structure=1		-0.490**	-0.420**
Hedonic predictions for land residuals		0.911***	

Small, old buildings Remaining structure valued less by market

Land Value Shares by Type of Neighborhood, Comparison to FHFA

Conclusion

- Land and structure values follow similar trends they are irreversibly linked.
- As a result, LV ratios are relatively stable for most urban properties.
- Empirical results support our parsimonious OV model.
- We politely disagree:
 - "Land prices, not replacement costs, are the key to understanding the trajectory of house prices. **Rising land prices explain about 80 percent of the global house price boom** that has taken place since World War II."

— Knoll et al. (AER, 2017)