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Abstract 
 

The availability of global high-resolution built-up area datasets provides researchers and policy 
makers a tool for monitoring progress on a number of sustainable development targets. These 
datasets are made possible by the application of increasingly sophisticated computer methods 
that eliminate the need for human intervention in classifying remotely sensed earth imagery. The 
European Commission’s Global Human Settlement Layer (GHSL) is one such dataset with 
historical layers corresponding to the epochs of 2014, 2000, 1990, and 1975. We assess the 
accuracy of the GHSL landcover classification for the circa 2014 period, as well as the accuracy 
of the Atlas of Urban Expansion land cover classifications for the circa 2014 period, using 
reference map data that was manually digitized from high resolution satellite imagery in 200 
global cities. We apply the urban extent methodology developed in Atlas of Urban Expansion to 
create GHSL urban extents and compare them to Atlas of Urban Expansion extents at the 1990, 
2000, and 2014 time periods. The overall accuracies of the two datasets are essentially the same, 
never more than one percentage point apart. Urban extents created with GHSL data were smaller 
than Atlas extents in 2014, but larger in 2000 and 1990. Discrepancies between the datasets at 
the1990 period may require additional investigation to help establish the historical trend.         
 
Keywords: Accuracy assessment, Landsat, GHSL, urban extent, urbanization, global 
comparison  
 
  



 
 

About the Authors 
 
Alejandro M. Blei is a research scholar at the Marron Institute of Urban Management at New 
York University. He was a research coordinator for the Monitoring Global Urban Expansion 
research program, a tri-partite collaboration between New York University, UN-Habitat, and the 
Lincoln Institute of Land Policy. He is a co-author of the 2016 Atlas of Urban Expansion. 
Address: 60 5th Avenue, 2nd Floor 
New York, NY 10011 
Telephone: 212-992-6872 
Email: ablei@stern.nyu.edu   
 
Shlomo Angel is a Professor of City Planning and the Director of the NYU Urban Expansion 
Program at the Marron Institute of Urban Management at New York University. 
Email: sangel@stern.nyu.edu 
   
Daniel L. Civco is a Professor Emeritus of Geomatics and former director of the Center for Land 
Use Education and Research (CLEAR) at the Department of Natural Resources and the 
Environment of the University of Connecticut. 
 
Address: 1376 Storrs Road, U-4087 
Storrs, CT 06269 
Telephone: 860-486-0148 
Email: daniel.civco@uconn.edu 
 
Yang Liu is a research scholar and statistician at the Marron Institute of Urban Management at 
New York University. 
Email: yl3371@nyu.edu 
 
Xinyue Zhang is a Masters student at the NYU Center for Data Science and a graduate assistant 
at the Marron Institute of Urban Management at New York University. 
Email: xz2139@nyu.edu 
 
 
 
 
 
 
 
 
 
 
 
  

mailto:ablei@stern.nyu.edu
mailto:sangel@stern.nyu.edu
mailto:daniel.civco@uconn.edu
mailto:yl3371@nyu.edu
mailto:xz2139@nyu.edu


 
 

Table of Contents 
 
Introduction ................................................................................................................................... 1 
 
Data ................................................................................................................................................ 5 

The Global Sample of Cities ............................................................................................... 6 
The Universe of Cities ............................................................................................ 6 
Sampling Criteria .................................................................................................... 7 
Landsat Data Collection and Classification ............................................................ 8 
Urban Clusters and the Urban Extent Rule ........................................................... 11 

Locales and the Intraurban Sampling Framework ............................................................ 13 
Bounding Box and Halton Sequence .................................................................... 13 
Locale Selection .................................................................................................... 14 
Locale Digitization and Labeling .......................................................................... 15 

GHSL Dataset ................................................................................................................... 18 
 
Method ......................................................................................................................................... 18 

Accuracy Assessment ....................................................................................................... 19 
Pixel Based Assessment ........................................................................................ 21 
Locale Based Assessments ................................................................................... 21 

Map Comparisons ............................................................................................................. 22 
Pixel and Locale Based Comparisons ................................................................... 22 
Urban Extent Comparisons ................................................................................... 22 

 
Results .......................................................................................................................................... 24 

Accuracy Based on Pooled Data ....................................................................................... 24 
Pixel-Based Measures ........................................................................................... 24 

Accuracy Based on City-Level Data ................................................................................. 27 
Pixel-Based Measures ........................................................................................... 27 
Locale-Based Measures ........................................................................................ 29 

Map Comparisons, Atlas vs. GHSL .................................................................................. 30 
Pixel-Based and Locale-Based Comparisons ....................................................... 30 
Urban Extent ......................................................................................................... 31 

 
Discussion..................................................................................................................................... 33 

Accuracy ........................................................................................................................... 33 
Urban Extent Comparisons ............................................................................................... 37 

 
Conclusion ................................................................................................................................... 38 
 
References .................................................................................................................................... 40 
 



Page 1 
 

Accuracy Assessment and Map Comparisons for Monitoring Urban Expansion: 
The Atlas of Urban Expansion and the Global Human Settlements Layer 

 
 
 

Introduction 
 
Remotely sensed earth observation (EO) data drives our ability to systematically map and 
measure changes to the surface of the earth. The record of satellite based terrestrial observations 
extends backward nearly half a century, beginning with NASA’s Landsat program and its 
Landsat 1 satellite, launched in 1972. Successive Landsat missions have provided a continuous 
stream of publicly available images with increasing spatial and spectral fidelity (Roy et al 2014). 
The analytical techniques to interpret the information collected from Landsat and related EO 
satellites are well developed and allow for the classification of image pixels into various land 
cover categories, including built-up areas. When mapped, the result can be used to assess the 
spatial extent of human settlements and its change over time.  
 
While the classification of remotely sensed imagery can be used to identify amount and the 
location of built-up area, it does not tell us how this information relates to human settlements per 
se. It is the job of the analyst to interpret the data and make decisions about which areas to group 
together, which areas to leave separate, and why. These two tasks, the classification of remotely 
sensed imagery and the interpretation of these images to determine the outer boundaries of cities, 
and their change over time, represent the core work of the Atlas of Urban Expansion—2016 
Edition (the Atlas).  
 
The Atlas focused on a random stratified sample of 200 cities at three time periods, circa 1990, 
circa 2000 and circa 2014 with a view to making inferences about the universe of cities, or the 
set of all 4,231 cities in the world that were identified to contain populations of at least 100,000 
in 2010 (Angel et al 2016a, Galarza et al 2018). Although the sample size was deemed sufficient 
for estimating global averages, our focus on 200 cities, a 4.7 percent sample, was largely a 
function of available resources. Our image classification procedures are labor intensive. It 
required approximately 25 hours to complete all classifications for a single city, from the initial 
step of image collection to the final step of post-classification manual editing. We studied cities 
circa the target date because we had to identify cloud free Landsat images over large study areas, 
which sometimes required going forward or backward a year or two from that target. Completing 
the Atlas also entailed a host of other tasks, including the collection of spatially explicit 
population data, the digitization of blocks and roads features from high resolution satellite 
imagery, and the completion of surveys of land and housing regulations and affordability across 
the 200-city sample, all of which placed additional constraints on the resources available to us. 
 
The recent availability of global built-up area datasets with Landsat like spatial resolution (~30 
meters), or better, where classification procedures have already been applied to the satellite 
images, represents a turning point for the study of settlements from EO data. Most importantly, it 
eliminates the costs of image classification to users. This means that that any city, group of 
cities, region, country, or conceivably the entire world, can be the focus of study where little else 
is required of the analyst except the extraction of data corresponding to the areas in question. 
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This has potentially profound implications for the type of work contained in the Atlas as it would 
allow for a substantial increase in the sample size, or the addition of country-based or region-
based studies, either option at a minimal cost.  
 
The key distinction between the classification methods applied in the Atlas versus those applied 
in the global datasets concerns the role of human decision-making in reviewing and adjusting 
outcomes generated by image analysis programs. The Atlas classifications are relatively time 
intensive because the unique spectral information within a city specific study area is analyzed on 
a case-by-case basis. Image analysis software initially clusters the data, but the analyst adjusts 
the software driven output to reflect human understanding of the built environment features in 
that particular location. It would not be possible for a human analyst to assess the entire surface 
of the earth in such a manner. The global maps we see today are made possible due to the 
application of increasingly sophisticated computer driven procedures to vast collections of 
remotely sensed images. 
 
Before adopting a global built-up dataset in favor of our existing practices, we are curious to 
know how our map classifications compare and how differences in the map classifications may 
affect the size and the spatial agreement of cities’ urban extents, a key feature of the Atlas 
methodology and a derived output of the land cover classifications. More concretely, in this 
paper we would like to address the following questions: 

1. How accurate are the land cover classifications in the Atlas vs. land cover classifications 
from global built up maps? 

2. How do the Atlas classifications and the global land cover classifications compare to 
each other? 

3. When we apply the urban extent methodology to global-built up maps, how does the 
result compare to the findings obtained in the Atlas 

 
We focus a single global urban map, the European Commission’s Global Human Settlements 
Layer (GHSL), released to the public in 2016 (available at: 
http://ghsl.jrc.ec.europa.eu/datasets.php). The GHSL contains globally comprehensive 38-meter 
Landsat derived built-up area layers at four time periods: 1975, 1990, 2000, and 2014. The 
Landsat derived GHSL product provides the basis for the retrospective analysis of built up area 
worldwide and the 1990, 2000, and 2014 dates match our own study. Data for the 2016 GHSL 
built-up product, and for prospective products, is based, or will be based, on imagery collected 
from the European Space Agency’s Sentinel satellite at a finer spatial resolution, of 
approximately 10-20 meters. We do not address the Sentinel derived built-up dataset in this 
paper. The procedures and added-value of Sentinel are discussed elsewhere (Pesaresi et al 2016; 
Corbane et al, 2017).  
 
The GHSL is one of a number of products at increasingly finer spatial resolutions that map built-
up area globally from EO data. Ten years ago, a survey identified ten such global maps, where  
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Figure 1: GHSL 2014 (left) and Atlas (right) land cover classifications for Ndola, Zambia, 
Jun. 2014 (top row); Jequie, Brazil, Apr. 2014 (middle row); and Kaiping, China, Nov. 
2014 (bottom row). Brown/red = built up, blue = water, and light brown = open space. 
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the smallest spatial resolution among them was 309 meters and the typical map resolution was 
approximately 1 kilometer (Potere et al 2009). While the smaller resolution Landsat data had 
been available at that time, no group had processed the data to allow for it to be used as the basis 
of a global built-up map. 
 
Today, the spatial resolution of global built-up maps has increased by a factor of 10 or more. 
Alongside GHSL there is GlobeLand30 (GL30), a Landsat derived 30-meter global land cover 
dataset produced by the National Geomatics Center of China, and Global Urban Footprint, a12-
meter resolution dataset produced by the German Aerospace Center from the TerraSar-X and 
TanDEM-X satellites, which includes an urban areas layer based on images collected circa 2010. 
While GL30 contains information for ten land cover classes and GUF is at a fine spatial 
resolution, the GHSL is unique due to its historical data layers and its one-click ease of access to 
its entire dataset. This makes it an appropriate choice for studying built-up area change over 
decades at the global scale. Furthermore, GHSL plans to release new data layers on a yearly 
basis going forward while the frequency of the other products is unclear.  
 
The accuracy of remotely sensed data, particularly in vast datasets that cover the entire earth, 
raises a number questions. It is relatively easier to calibrate detection algorithms when the 
analysis area is small, with relatively homogenous soils and vegetation, building materials, and 
geographic features. Increased heterogeneity in the input data, such as the combined area across 
multiple continents, entails a need for more complex algorithms that can discriminate between 
increased noise levels, which in turn make the target signal harder to detect. When Potere and 
Schneider (2007) compared the total amount of built up area in circa 2000 global maps, for 
example, where maps often shared the same inputs, they observed a range of approximately three 
million square kilometers between the lowest and highest estimates. Clearly, the different 
estimates cannot be simultaneously correct. Perhaps the differences between the newer 
generation of global built up maps are substantially smaller, though we do not know the answer 
with certainty, as such a comparison has not been undertaken, to our knowledge. A comparison 
of the GUF and 12-meter Sentinel derived GHSL suggests a high degree of correspondence 
between the two datasets, at least across urban and rural settings in Central Europe (Klotz et al 
2016).    
 
We had reason to believe that the Landsat classifications in the Atlas were of relatively high 
accuracy. The Atlas classification procedures were virtually unchanged from Angel et al (2005), 
whose authors obtained an average overall mapping accuracy of 89.2% from a pixel-based 
assessment in 12 cities. Later, Potere et al (2009) conducted an accuracy assessment on all 120 
cities in Angel et al (2005), focusing on an area-based majority class assessment in place of pixel 
comparisons, obtaining an average overall accuracy of 87.1%. Members of the team that 
conducted the Angel et al (2005) classifications were involved in the classifications of Angel et 
al (2016), leading us to believe that the new Landsat classifications would be comparably 
accurate. When the project carried on longer than expected, a number of Landsat classifications 
were completed by the India Urban Expansion Observatory, a partner organization, and that 
work was conducted in the exact same manner.      
An accuracy assessment and map comparison were not part of our original workplan but two 
factors influenced our decision to pursue the current exercise. The first was our discovery of the 
GHSL which occurred when the Atlas was in full production and nearly all classifications were 
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completed. Initial visual inspections of GHSL data for areas corresponding to a handful of Atlas 
cities suggested a high degree of correspondence between the two. We were intrigued by the 
prospect of a global time-series dataset with a similar spatial resolution that could be used to 
generate three-way classifications of built-up, water, and not built-up, in other words, a dataset 
that could provide the fundamental input for Atlas analyses. If we could prove to ourselves that 
the GHSL was of comparable accuracy or better accuracy than our own work, or that it met an 
acceptable level of accuracy, then we should be able to adopt the GHSL in the future with little 
hesitation. We were eager to obtain an answer to this question. 
 
The second factor that influenced our decision to pursue this analysis was the recognition that the 
Atlas allowed for a novel and comprehensive method for carrying out such an exercise. 
Information collected for Volume 2: Blocks and Roads, could be used to assess the accuracy of 
all 200 Atlas classifications for the most recent time period. In each city, analysts had manually 
digitized and assigned land use categories to all block and road space within ten-hectare circular 
areas, called locales, distributed in a quasi-random fashion across the entire city. By aggregating 
the digitized features within an individual locale, it would be possible to differentiate the entire 
locale area into the binary categories of built-up and not built-up. The average city was assigned 
87 locales and many cities contain more than 100. This means that the average city has at least 
8.7 kilometers of manually digitized reference map data distributed in a quasi-random fashion 
across the city that could be used to assess the accuracy of the Atlas and GHSL land cover 
classifications. The broader analysis framework ensures that validation sites are approximately 
random distributed within cities and that the cities on which the analysis basis are distributed 
across world regions and across city population size categories.  
 
We now have answers to the three questions posed earlier. First, although somewhat lower than 
other published results, the overall accuracy of the Atlas and GHSL is datasets is the essentially 
the same, never more than one percentage point apart. It should be noted that the similarity in 
overall accuracy masks differences in the accuracies of the built up and open space classes across 
the datasets. Second, the two datasets are quite similar to each other in overall terms, and largest 
difference between them concerns the identification of open space. Third, urban extents created 
with Atlas data were significantly larger than urban extents created with GHSL data in 2014, but 
Atlas extents were significantly smaller GHSL extents in 2000 and 1990.  
 
The paper is structured as follows: section 2 provides an overview of the different datasets 
employed in the analysis; section 3 discusses the methods by which we conducted the accuracy 
assessment and map comparisons; section 4 describes the results obtained from different 
accuracy measures and map comparisons; section 5 interprets these findings, and section 6 
concludes. 
 
 

Data 
 
In this section we discuss the two levels of study sites—cities and locales, the Atlas and GHSL 
land cover data, and the reference map data digitized from high resolution satellite imagery.  
First, we describe how the global sample of cities was selected from the universe of cities and the 
transformation of Landsat data into urban clusters, and urban extents. Second, we describe how 
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intraurban study sites, or locales, were sampled from within cities’ urban extents and how 
analysts digitized block and road features. Third, we discuss the GHSL dataset.  
 
The Global Sample of Cities 
 
The rationale and procedures behind the creation of the global sample of cities were first 
described in Angel et al (2016a), “Chapter 2: The Global Sample of Cities, 1990 – 2014.” A 
summary of the key points is presented below. Additional details concerning data acquisition and 
methods can be found in Blei et al (2018).   
 
The Universe of Cities  
 
In our work, we have focused on cities as the unit of analysis. There is disagreement as to how 
many cities on earth there are because there is no universally accepted method for defining cities 
or identifying cities from satellite imagery. Governments and scholars have applied various 
combinations of the following criteria: population thresholds, administrative boundaries, density 
thresholds, commuting and activity patterns, and emerging concepts in urban studies (Parr 2007; 
OECD 2012; Uchida and Nelson 2008; Deuskar and Stewart 2016; and Taubenbock et al. 2014). 
We have chosen a definition that we could apply universally and consistently with existing data 
sources.  
 
The 4,231 cities in the universe of cities represent contiguous or near-contiguous built-up areas 
of settlements that had populations of 100,000 or more in the year 2010. This area, or extent, is 
visible to the naked eye from high resolution satellite imagery, such as that which can be viewed 
on Google Earth or Bing Maps, and typically extends outward from a historical city center. A 
contiguous built-up area may include several municipalities and is neither constrained nor 
defined by administrative boundaries. Therefore, a single observation in the universe of cities 
may represent a number of adjacent municipalities.  
 
To construct the universe of cities it was necessary to first identify candidate cities from lists of 
cities and towns, municipalities, metropolitan areas, and urban agglomerations with a reliable 
population estimate for 2010 or for which a population value at 2010 could be estimated. The 
three main data sources for this exercise were the UN Population Division, which provided 
information for settlements with populations of at least 300,000, the website 
www.citypopulation.de, which reproduces census data and census maps for all countries, and the 
Chinese Academy of Sciences which provided information for Chinese settlements.  
Google Earth satellite imagery was used to inspect each candidate city, both to confirm its 
existence and to determine whether it should be merged with neighboring observations as part of 
a larger urban extent. Candidate cities below the population threshold that were not part of a 
larger extent were excluded from the analysis. In a small number of cases, those associated with 
cities that are part of larger metropolitan conurbations—such as the Northeast Corridor in the 
United States—the locally-defined metropolitan area boundary was used to differentiate one 
built-up extent from another, resulting in the separation of the New York and Philadelphia built-
up areas, for example. Similar divisions were applied in China’s Pearl River Delta region and in 
the Tokaido corridor in central Japan, as well as in a few other large conurbations where it was 
difficult to discern the boundaries of individual cities. In applying administrative or statistical 
boundaries in these limited cases, we acknowledge that a city’s extent cannot extend endlessly; it 

http://www.citypopulation.de/
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should roughly correspond to a commuting area or labor market area; in other words, the area 
linked together by social and economic spatial interaction. 
 
Figure 2: The universe of 4,231 cities with populations of 100,000 or more in 2010. 
 

 
 

Sampling Criteria 
 
It was not possible to study each observation in the universe of cities and perhaps it should not be 
necessary, so long as there is a carefully constructed sample whose results can be generalized to 
the universe of cities as a whole. The universe of cities was organized along three strata with a 
view to selecting a representative sample.  
 
The first stratum organized cities by eight world regions: (1) East Asia and the Pacific, (2) 
Southeast Asia, (3) South and Central Asia, (4) Western Asia and North Africa, (5) Sub-Saharan 
Africa, (6) Latin America and the Caribbean, (7) Europe and Japan, and (8) Land-Rich 
Developed Countries. Land-rich developed countries include the United States, Canada, 
Australia, and New Zealand. The regional categories roughly follow the divisions in the United 
Nation’s World Urbanization Prospects. Cities were sampled from the eight regions in 
proportion to the population of the universe of cities in these regions. 
The second stratum organized cities by city population size, of which there were four categories, 
roughly corresponding to small, medium, large, and very large: (1) 100,000 – 427,000; (2) 
427,001 – 1,570,000; (3) 1,570,001 – 5,715,000; and (4) 5,715,001 and above. The total 
population of the universe of cities in each of these categories was approximately the same, 
about 622 million. An approximately equal number of cities was sampled from each of the four 
population size categories.  
 
A third stratum was included in the sampling framework so that the sample would contain cities 
from countries with few cities as well as cities from countries with many cities. The number of 
cities in the country stratum contained three categories: (1) 1–9 cities; (2) 10–19 cities; and (3) 
20 or more cities. Cities were sampled from these categories in proportion to the population of 
the universe of cities in these categories.  
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When combined, the eight regions, four population size groups, and three ‘number of cities in the 
country’ categories create 96 subcategories (8 × 4 × 3 = 96), or boxes, to which any observation 
in the universe of cities must belong. After distributing all 4,231 observations, 71 non-empty 
boxes remained. Two hundred cities were randomly drawn from these non-empty boxes in 
accordance with the sampling strategy. 
 
Figure 3: The global sample of cities. 
 

 
 
Landsat Data Collection and Classification 
 
In Vol 1: Areas and Densities, we estimated urban extent populations by apportioning the 
population of spatially explicit population zones to all the built-up area within those zones and 
summing the apportioned values within the urban extent boundary. To streamline the process of 
satellite imagery collection and analysis, urban extent creation, and population apportionment, 
we first defined a city’s study area by the set of population zones we believed would completely 
contain the urban extent. This decision was informed by an initial assessment of night lights data, 
which is known to overestimate built up area, and by verification of high resolution imagery. In a 
handful of cases, the final study area was determined through an iterative process.  Upon creating 
the urban extent, we sometimes observed that it ran up against the study area boundary rather 
than terminating successfully within the study area. In these cases, we acquired additional 
spatially explicit population data to increase the size of the study area. Exceptions to this rule 
were those where the iterative process would have led to urban extents that contained more than 
one functional urban area or more than one metropolitan labor market. In these cases, we kept 
the study area boundaries fixed, using local definitions of metropolitan area boundaries or basing 
the decision on expert opinion.  
 
Landsat scenes from Landsat 4, 5, 7, and 8 satellites, corresponding to dates circa 1990, 2000, 
and 2014 were downloaded from the United States Geological Survey’s Earth Explorer website. 
Study area boundaries were superimposed on Landsat scenes corresponding to the three time 
periods. The intersected area, with an additional 1 km buffer, was selected for classification. Our 
objective was to extract three types of land cover categories from the Landsat images: water, 
built-up, and other/open space. Unsupervised classification techniques, where the analyst uses a 
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posteriori knowledge to label spectral classes generated by image analysis algorithms were 
performed using ERDAS Imagine software. The three-way classification of Culiacan, Mexico is 
shown in Figure 4. 
 
Figure 4: The three-way classification of Culiacan, Mexico in 1990 (left), 2000 (middle), and 
2014 (right). Water = blue, open space = light brown, and built-up = red. 
 

 
 
Landscape Analysis 
 
The three-way classification of water, built-up, and open space was the input into a secondary 
analysis. This secondary analysis, or landscape analysis, sub-classified built-up and open space 
pixels into three categories each, allowing us to differentiate among different types of built-up 
and open space pixels. The sub-classification of the built-up class was based on the spatial 
density of built-up pixels within the Walking Distance Circle, defined as the 1 km2 circle about 
an individual pixel. The three categories of built-up produced by the landscape analysis include: 
 

1. Urban pixels, where the majority (> 50%) of pixels within the Walking Distance Circle 
are built up; 

2. Suburban pixels, where 25-50% of pixels within the Walking Distance Circle are built-
up; and 

3. Rural pixels, where < 25% of pixels within the Walking Distance Circle are built-up. 
 
The terms urban, suburban, and rural are used in the sense that the areas they generally 
correspond to our perceptions of what constitutes urban, suburban, and rural area in many cities 
throughout the world. The thresholds for the different categories are arbitrary and a different set 
of cutoffs would of course change the proportion of built up pixels in each category. We settled 
on these particular cutoffs after experimenting with different combinations of values in many 
cities, examining the output, and deciding which combination of values was associated with the 
most consistent and intuitive results. The three categories of built-up area pixels in Culiacan are 
shown in figure 5.  
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Figure 5: The sub-classification of built-up area pixels into urban built-up (dark red), 
suburban built-up (red), and rural built-up (ochre) in Culiacan in 1990 (left) and 2014 
(right). 

 
 
The three categories of open-space produced by the landscape analysis include: 
 

1. Fringe open space pixels, all open space pixels within 100 meters of urban and suburban 
built-up pixels; 

2. Captured open space pixels, clusters of open space pixels completely surrounded by 
fringe open space pixels less than 200 hectares in area; and 

3. Rural open space pixels, all open space pixels that were neither fringe nor captured. 
 
Taken together, the fringe and captured open space within a study area comprise the urbanized 
open space. Urbanized open space and rural open space together make up all of the open space 
within the study area. The three categories of built-up area pixels, the three categories of open 
space pixels, and water pixels are shown below in figure 6.  
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Figure 6: The classification of open space into fringe open space (light green), captured 
open space (bright green), and rural open space (dark green) in Culiacan in 1990 (left) and 
2014 (right). 
 

 
 
Urban Clusters and the Urban Extent Rule 
 
The landscape analysis differentiates built-up and open space pixels in a way that facilitates the 
creation of rules that can be used to identify clusters across the study area. We define urban 
clusters as discrete patches of urbanized open space, which by definition contain urban and 
suburban built-up pixels in their interior areas. There is no limit to the number of urban clusters 
within a study area; sometimes there is only one cluster and sometimes there are thousands. 
Figure 7 shows that there were several smaller clusters surrounding the main Culiacan cluster 
both in 1990 and 2014. 
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Figure 7: Urban clusters across the Culiacan study area in 1990 (left) and 2014 (right). 
 

 
 
The urban extent represents a set of urban clusters within the study area. The challenge was to 
determine which clusters to include. We employed a rule based on the size and geographic 
proximity of clusters to each other to determine whether they should be grouped together into the 
same extent. We used this rule in the absence of globally available data that could be used to 
measure the strength of commuting ties between clusters, for example, or local knowledge about 
whether separate clusters should be considered to be one or two distinct cities.  
 
More specifically, the decision of whether to group individual clusters together depended on an 
inclusion rule. We first generated a buffer around each cluster where the edge of the buffer area 
is always equidistant from edge of the cluster. The buffer distance for a given cluster is a 
function of the area of the cluster and it generates a buffered area equal to one-quarter the area of 
the cluster. The inclusion rule unites all clusters whose buffers intersect one another. The set of 
clusters with overlapping buffers forms an urban extent. The urban extent for the city in question 
is the grouping of clusters that contains the principal city’s city hall location. Figure 8 shows the 
clusters that became the Culiacan urban extent in 1990 and 2014.  
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Figure 8: The Culiacan urban extent in 1990 (left) and 2014 (right). 
 

 
 
Locales and the Intraurban Sampling Framework 
 
In the same way that we studied a sample of cities to draw inferences about the universe of cities, 
we studied a sample of intraurban locations to draw inferences about the spatial organization of 
blocks and roads across each city’s urban extent. This sampling framework was developed for 
the Atlas of Urban Expansion—Volume 2: Blocks and Roads. Over each circular 10-hectare area 
sample site, or locale, analysts manually digitized blocks and roads features from high resolution 
satellite imagery. The spatial data for cities’ blocks and roads features, as well as summary data 
tables of blocks and roads metrics may be downloaded from the Atlas website.  For the present 
analysis, we use the information collected over these sampled areas as reference map data to 
assess the accuracy of the Atlas and GHSL land cover classifications. In this section, we discuss 
the generation of sample sites and the digitization procedures. 
 
Bounding Box and Halton Sequence 
 
The geographic coordinates of a bounding box that completely contains the urban extent was the 
basis of a Halton sequence of XY coordinate pairs within the box. The bounding box and the 
Halton points for Addis Ababa are shown on the left side of figure 9. We then focus on points 
that fall within the urban extent. Those points, shown on the right side of figure 9, represent the 
origins of potential sample sites within the urban extent. We employed a Halton sequence rather 
than randomly generated points for two key reasons. First, a Halton sequence produces a more 
even distribution of points across space compared to points generated by a truly random process, 
which results in some degree of clustering. Second, when the same initial XY coordinate pair is 
used to start the sequence, the points always occur in the same order and it is easy to maintain a 
relatively even spatial distribution of points by adding them in their sequential order.   
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Figure 9: The Addis Ababa bounding box and its Halton sequence (left); Halton points 
within the Addis urban extent (right). 
 

 
 
Locale Selection 
 
Each Halton point within the urban extent was buffered by a radius of 178.4 meters to create the 
10-hectare circular area called a locale. Analysts went through the ordered list of Halton 
generated locales and inspected the locale area against high resolution satellite imagery to 
determine whether the area was at least 80 percent built-up. Analysts performed this step because 
the original Atlas task was to obtain information about the spatial organization of blocks and 
roads. If the locale area was mostly open space, it would not contribute to our understanding of 
blocks and roads and it was skipped. Majority open space locales might fall within fringe or 
captured open space areas or in areas that were classified as built up but that corresponded to 
open space in actuality.  
 
For the accuracy analysis, we identified these skipped locales and added them to the set of 
locales associated with a particular city. We added the skipped locales because we wanted the 
reference dataset to represent built up areas and open spaces relative to their actual distribution 
across the urban extent. In the original task, analysts selected at least 80 locales per city and 
digitized their blocks and roads to estimate various metrics. Smaller cities sometimes received 
fewer than that amount. After the initial allocation, locales were added based on available 
resources and Blocks and Roads metrics were adjusted accordingly.    
The first twenty locales of the Halton sequence associated with the 2010 Addis Ababa urban 
extent are shown in figure 10 on the left. The first five points of the sequence are in green, the 
second five points in the sequence are blue, the third five points are in orange, and the fourth five 
points are in purple. This image illustrates how the sequential order of Halton points results in a 
relatively even distribution of locales across the analysis area. The image on the right shows the 
final distribution of 86 locales that were used for the Addis Ababa accuracy analysis. The six 
skipped locales added to the initial set of 80 are shown in yellow. The set of 86 locales used in 
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the Addis Ababa the accuracy analysis represent 8.6 km2 of reference map data and 2.9 percent 
of the total area of the Addis Ababa urban extent of 296 km2. 
 
Figure 10: The first 20 locales based on the Addis Ababa Halton sequence (left) and the 
final set of 86 Addis locales. 
 

 
 
Across 194 cities that were included in the accuracy analysis, the average city contained 87 
locales and 11 of those locales, or 13 percent, were added because they had been skipped during 
the initial locale selection. The locale totals may appear somewhat lower than expected based on 
the initial and additional allocation targets. This is explained by data programming idiosyncrasies 
unique to the accuracy analysis and the need to eliminate a number of locales that did not meet 
specified criteria.  
 
Locale Digitization and Labeling 
 
The selection of locales and the digitization of their interior space was carried out by a group of 
analysts who were trained by the project team and instructed to follow a set of guidelines 
contained in an analyst manual. Digitization was carried out in the Java OpenStreetMap (JOSM) 
program, an editing tool for OpenStreetMap, a computer mapping application that uses Bing 
Maps as its satellite imagery layer. The initial rationale for the digitization of block and roads 
was to obtain information to estimate various metrics contained in Vol 2: Blocks and Roads. We 
have adopted that information and reorganized it for the accuracy analysis. 
 
Analysts were instructed to first segment the locale area into street space and block space. Street 
space was taken to include all area conforming to the right-of-way, meaning any area that is 
currently used or could be potentially used by vehicles or pedestrians for travel. This included 
roadways, continuous sidewalks, bike paths, and street parking lanes. Paths within parks or 
spontaneous paths within unbuilt blocks were not included.     
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Block space, or the areas bounded by street space, was differentiated into open space and built up 
area. Open space refers to unbuilt areas and may represent open countryside, forests, crops, 
parks, cleared land, and water bodies. Built-up area was differentiated along two broad classes: 
non-residential and residential. Non-residential refers to built-up areas whose purpose is not 
residential and includes industrial parks, airports, sports facilities, malls and plazas, shopping 
centers, parking lots, and playgrounds, among others. Unlike the non-residential category, 
residential areas were sub-categorized into different classes depending on the form of the 
structures, the relationship of the structures to each other, the homogeneity of the structures, and 
plot sizes. These four categories included: atomistic, informal subdivision, formal subdivision, 
and housing project and are further described in Vol 2: Blocks and Roads, Chapter 3: 
“Understanding and Measuring Urban Layouts”. The residential and non-residential categories 
comprise all non-street built-up area within the locale. All street space was treated as built-up. 
Therefore, the sum of street space, non-residential, and residential represents all built up area 
within the locale. The sum of built up area and open space represents the entire locale area. In 
this analysis, we are interested in the binary classification of locale space into built up area and 
open space. The aggregation of subcategories of built up area into a single built up class and the 
binary distinction of built up and open space in a single locale is shown in figure 11.  
 
Figure 11: An Addis Ababa locale boundary (left); the digitization of its block space into 
residential (pink), non-residential (yellow), street space (hollow), and open space (green), 
(middle); and the binary built-up area/open space classes (right). 
 

 
 
Reference Data Imagery Date 
 
An important question for the accuracy analysis concerned the imagery date on which the 
digitization of locale features was based. When the temporal distance between the comparison 
maps dates (Atlas and GHSL classification) and the reference imagery increases, the higher the 
likelihood, all things being equal, that the accuracy assessment yields errors. Intuitively, the 
direction and distance matter for interpreting the type of error. If the reference imagery date 
precedes the map classification date, then perhaps the classification identifies built up area but 
the reference map does not. This ordering of dates may therefore be associated with a higher 
incidence of built-up area commission errors. Of course it is possible that the area was built-up in 
the intervening period, but there is no way to know for certain whether the error represents true 
error or a false error. All we know is that we might expect a higher incidence of commission 
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errors than compared to the case when the classification date precedes the ground truth date. In 
that case, the classification may identify no built-up area while the ground truth does. Of course 
it is possible that nothing existed at the time of the map classification and that the area was built 
in the intervening period. We might expect more errors of built-up area omission with this 
ordering of dates.  
 
We could obtain the dates of the Bing satellite images used for digitization using the Bing Areal 
Imagery Analyzer for OpenStreetMap, a web-based resource. A computer program scraped the 
imagery dates associated with locale centroids from the Bing Areal Imagery Analyzer and 
appended this information to locales.  This information was extracted after the Atlas was 
completed, during the last half of 2017 and the first months of 2018. All digitizations for the 
Atlas were completed by August 2016. This means that if a city is associated with a ground truth 
imagery date after August 2016, we know that it cannot truthfully represent the actual imagery 
used. Approximately 10 percent of cities’ imagery dates fall into this range.  
 
Table 1 summarizes information about reference imagery dates across and within cities, as well 
the temporal relationships among cities’ reference imagery dates, NYU classification dates, and 
GHSL classification dates. To our surprise, there can be a surprising amount of variation in the 
reference imagery dates within a city. The first column summarizes the average reference 
imagery date across cities. For all cities, the average reference imagery date is August/September 
2013. This is very similar to the average NYU date classification date of September 27, 2013.  
 
Table 1: Summary statistics for the variation in ground truth dates across and within cities 
and differences between ground truth dates and classification dates.  
 

 
 
Since we do not know the actual dates associated with GHSL classifications we assigned them a 
date corresponding to the midpoint of 2014. In Pematangsiantar, Indonesia, the average reference 
imagery date was observed to be the earliest, from late 2003, while in Sao Paulo it was observed 
to be the latest, form mid-2017. Within cities, the average variation of imagery dates is 1.8 years 
and the median variation is 1.1 years. In 19 cities it was greater than 5.5 years. At the city level, 
the median pairwise difference between the reference imagery date and the classification date 
was 1.7 years for both the Atlas and GHSL data. The difference is even smaller, 0.6 years, when 
we compare the Atlas and GHSL data directly. While there a few observations where the 
reference imagery date is relatively far away from the classification date, this difference is less 
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than 2.6 years in 75 percent of cities. We believe this represents good temporal agreement among 
the three datasets and that it should minimize the effect of temporal variation in explaining 
errors. 
   
GHSL Dataset 
 
The Global Human Settlement Layer (GHSL), produced by the Joint Research Center of the 
European Commission, is a project aimed at monitoring human presence on the planet over time. 
It is comprised of gridded layers of built-up area and population, at resolutions of 38.2 meters 
and 250 meters respectively, which feed into a 1-kilometer gridded settlement classification 
model (Pesaresi et al 2016a). The built-up area layer is based on images collected from Landsat 
satellites over a period of more than 40 years. The output of the analyzed images has been been 
grouped into four collections, corresponding to the epochs of 1975, 1990, 2000, and 2014. The 
actual dates of images used to create each collection may vary forward or backward from the 
target by a number of years.  
 
The GHSL identifies built-up area from the satellite images using the approach of symbolic 
machine learning which was designed for remote sensing big data analytics (Pesaresi et al. 
2016b). The association analysis techniques employed are commonly used in bio-informatics for 
uncovering relationships between environmental effects and gene expression. The GHSL 
supervised detection methods are automatic and have been calibrated with a diverse set of fine 
scale and broad scale training data, including: OpenStreetMap data for roads, settlement places, 
and urban cover; settlement locations from Geonames; settlement polygons from diverse 
sources; MODIS urban extent data, MERIS Globcover, and Landscan population density grids. 
In this study we focus exclusively on the 38.2 meter built up grid with data for 1990, 2000, and 
2014, which was downloaded from the GHSL online data portal.  

 
Method 

 
In this section we discuss how we performed (1) the accuracy assessment of the Atlas and GHSL 
classifications and (2) intermap comparisons of Atlas and GHSL data, for both the land cover 
classifications and a derived outputs of the classifications, or the urban extents. We sough to 
compare each data set to all others, as depicted in figure 12. 
 
Figure 12: The relationships explored among the three datasets. 
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Accuracy Assessment 
 
Map accuracy is typically assessed by comparing a produced map against a reference map or 
ground truth data. The task is more complicated when the analysis locations are globally 
distributed than when the locations can be field visited, observed, and recorded in person. High 
resolution satellite imagery helps us address this problem, though perhaps not definitively. 
Failure to account for the accuracy of a map classification leaves in doubt the confidence in the 
result and the generalizability of the conclusion.   
 
Even when reference data are available, assessing map accuracy is not always straightforward. 
To be sure, there are several factors to consider in an accuracy assessment, including ground data 
collection, classification scheme, spatial autocorrelation, sample size, and sampling scheme 
(Congalton, 1991). With regard to mapping human settlements, however, how should map 
accuracy be assessed? Should we care about the accuracy of smallest possible map unit, that is to 
say, whether an individual pixel in the produced map is accurate with respect to the reference 
data or ground truth? Or perhaps there should be greater focus on whether the amount of built-up 
area over some area interest matches the amount of built-up area indicated by a reference map? 
There are benefits to both approaches to understanding map accuracy. On the one hand, the 
accuracy of individual pixels matters as they are the fundamental mapping unit and the basic 
input into our landscape analysis, which in turn influences the generation of urban extents. On 
the other hand, we are mostly interested in map accuracy in the sense that we want a reliable 
estimate of urban extent area, so that we can measure its change, and population density change, 
over time. From this perspective, a broader measure of area agreement would be more important 
than agreement at a small spatial scale such as individual pixels.          
 
Accuracy comparisons can focus on the exact spatial allocation of a particular class or on 
broader measures of quantity agreement of classes (Pontius and Millones 2011). These 
comparisons may occur at varying level spatial scales. In other words, at the pixel level there 
may disagreement, but within a larger area such as a locale, there may be 100 percent quantity 
agreement between pixel classes despite spatial disagreement between pixel classes. Indeed, it 
would be possible to have comparisons with 100 percent spatial disagreement and 100 percent 
quantity agreement. Such mismatches are less problematic at smaller spatial scales but harder to 
reconcile as the spatial scale of analysis increases. In this accuracy assessment we focus both 
spatial allocation and quantity comparisons within locales.  
 
Conducting the accuracy assessment presented a fundamental problem as the three datasets in 
question: the reference map data, the Atlas classifications and the GHSL classifications are at 
different geometries and spatial resolutions. Figure 13 shows these three datasets for the same 
Addis Ababa locale.  
 
  



Page 20 
 

Figure 13: Reference map polygons (left), the NYU 30 meter classification (center), and the 
GHSL38.2 meter classification (right 
 

 
In order to make comparisons of spatial agreement we opted to transform all datasets to the same 
spatial resolution so that we could make one-to-one comparisons across individual units. We 
chose to transform all datasets to the GHSL pixel resolution and pixel grid. For the Atlas 
classifications, this required resampling and reprojecting the data to the larger GHSL resolution 
and snapping the data to the GHSL pixel grid. For the reference map data, this required 
rasterizing and reprojecting the polygon data, snapping to the GHSL pixel grid, and assigning 
pixels a label corresponding to the majority class within the pixel space. Figure 14 shows the 
transformed datasets at the GHSL spatial resolution.  
 
Figure 14: The rasterized reference map data (left), the resampled NYU data (center), and 
the GHSL 38.2 meter classification (right). 
 

 
 
The information obtained from the comparisons was fed into an error matrix, or confusion 
matrix, which provides a formal representation of the agreement between classes and a basis for 
calculation of several measures of map accuracy including producer’s accuracy and user’s 
accuracy of the different classes, as well as overall map accuracy (Congalton and Green 2009).  
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Pixel Based Assessment 
 
The first measure of accuracy assessed agreement at the pixel level. In each city, the pixel level 
comparisons for all pixels in all locales were pooled to populate a city specific error matrix. 
Figure 15 illustrates the four outcomes associated with pixel level comparisons. There can be  
agreement of open space, indicated by green, agreement of built-up, indicated by red, omission 
errors of the built-up class, indicated by orange; areas the reference map indicated to be built-up 
but that the Atlas/GHSL datasets identified as open space, and commission errors of the built-up 
class, indicated by blue, areas where the reference map indicated open space, but Atlas/GHSL 
datasets identified as built-up. The Atlas vs. GHSL comparison on the far right is not an 
assessment of accuracy per se, but an assessment of agreement.       
 
Figure 15: Comparisons at the pixel level for the reference data vs. NYU, reference map vs. 
GHSL, and NYU vs. GHSL. 

 
 
Locale Based Assessments 
 
Whereas the pixel-based assessment describes the the spatial agreement of pixel labels across the 
different maps, the locale-based assessments, of which there are two, describe different measures 
of quantity agreement.  
 
Following Potere et al (2009), the first locale-based assessment assigned one of two class labels,  
built-up or open space, to individual locales within a city. The locale label was determined by the 
majority class within the locale, obtained via the aggregation of pixel values. Comparisons at the 
locale level between the reference map locale label and the map classification locale label were 
used to populate error matrices to produce the standard accuracy measures. 
 
The second locale-based assessment was designed to be less rigid than the all-or-nothing 
majority class label. In the all-or-nothing approach, locale comparisons of 45 percent and 55 
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percent built-up, only a 10 percent difference, are treated as disagreement while locale 
comparisons of 55 percent and 95 percent –a 40 percent difference, are treated as agreement. For 
each individual locale we compared the percentage built-up in reference data versus the map 
classification. The mean difference in percent built-up across all locales is a measure of the 
quantity agreement between the reference map data and the map classification. Whereas 
overestimates and underestimates across locales may cancel each other out, suggesting high 
overall agreement in percent built up, we can learn about the total error associated with each the 
maps by observing mean absolute difference in percent built-up. There is no confusion matrix 
associated with this type of measure.  
   
Map Comparisons 
 
While comparing the Atlas and GHSL classifications to an independent reference map to assess 
their accuracy is important for understanding how the two datasets differ, direct comparison 
between the Atlas and GHSL datasets is also important for understanding how and why map 
accuracy matters. The relationship between map accuracy and intermap agreement is unclear, 
particularly with respect to derived outputs from the classifications. In other words, it may be 
possible for the size and spatial agreement of urban extents created by the Atlas and GHSL 
datasets to be more similar – or different – than the pixel-based assessments of accuracy suggest. 
This is an empirical question we will address. We are interested in exploring intermap agreement 
at various spatial scales, from the pixel level all the way up to the urban extent.  
 
Pixel and Locale Based Comparisons 
 
Following the approach of the accuracy assessment, we explore pixel-based and locale-based 
agreement between the Atlas and the GHSL datasets. There is no reference map, or ground truth, 
so to speak, so the comparison does not provide a measure of accuracy, only of agreement. The 
pixel-level comparison is based on pooling pixels at two levels: all pixels in all cities for a global 
assessment and all pixels at the city level for a city-based assessment for all cities. Similarly, 
locales are pooled across all sample cities and within all cities. Locale based comparisons are 
based on the majority class locale label and the percent built-up within the locale.  
 
Urban Extent Comparisons 
 
We are interested in comparing the derived outputs of the classifications, or the urban extents 
because of their clear connection to monitoring of city-level indicators.  
 
To create urban extents from the GHSL data, we modified our computer scripts to run the 
landscape analysis and clustering rules on the 38.2 meter resolution GHSL data. We also 
resampled the Atlas classifications to the GHSL spatial resolution and recreated urban extents to 
facilitate spatial comparisons between the two datasets. A side-by-side comparison of the 7-way 
classification based on the Atlas and GHSL datasets for the area surrounding Addis Ababa, 
including the three subcategories of built-up, three subcategories of open space, and water, is 
presented in the top row of figure 16. The Atlas data is displayed on the left side and the GHSL 
data on the right side. The density of built-up area in the GHSL dataset appears somewhat 
sparser than the Atlas dataset, which appears more tightly packed. The bottom row shows the 
superimposed urban extent boundary generated by each dataset on top of the 7-way 
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classifications. Even though the Atlas data precedes the GHSL data by approximately three 
years, the size and shape of the urban extents show to have a high degree of correspondence.  
 
We can quantify the spatial agreement between the two urban extents by superimposing one 
urban extent on the other and calculating the area shared by both extents, and the area exclusive 
to the Atlas extent and the area exclusive to the GHSL extent. In figure 17, we see the outline of 
the Atlas extent in blue the outline of the GHSL extent in orange. The shared area is shaded in 
purple.   
 
Figure 16: The Landscape Analysis tool applied to the Atlas and GHSL classifications (top 
row) where Atlas data is shown on the left and GHSL data on the right. The urban extent 
boundary generated by each dataset (bottom row). 
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The Atlas extent had an area of 292 km2 compared to an area of 279 km2 for the GHSL extent. 
From the perspective of the Atlas extent, the GHSL output was 4.5 percent smaller. The shared 
area between the two extents was 255 km2. This means 87 percent of the Atlas area was shared 
with GHSL and 91 percent of the GHSL area was shared with the Atlas Approximately 37 km2 
of the Atlas extent was not shared area (13 percent) and  24 km2 of the GHS area was not shared 
area (9 percent).    
 
Figure 17: The Addis Ababa circa 2014 outlines of Atlas urban extent (blue), the GHSL 
urban extent (orange), and the shared area of the two urban extents (purple). 
 

While the accuracy comparisons rely on digitization of reference imagery, which could only be 
obtained for the most recent time period, it is possible to compare urban extents created by the 
Atlas and GHSL datasets at all three analysis periods: 1990, 2000, and 2014. We report on the 
quantity and spatial agreement of urban extents across all time periods.  
 

Results 
 
Accuracy Based on Pooled Data  
 
Pixel-Based Measures 
 
We first pooled all 1,769,740 pixels across all cities to populate Atlas and GHSL specific error 
matrices. The interpreted accuracy measures are displayed in Table 2. 
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Table 2: Accuracy measures based on pooling of all pixels in the two datasets. 
 

 
 

Overall accuracies are across the two datasets are very similar, 77 percent for the Atlas and 78 
percent for the GHSL. The breakdown of producer’s and user’s accuracy for the different classes 
reveals differences in the performance of the two datasets that the single accuracy measure 
obscures. Producer’s accuracy for the built-up class is a measure of omission error and reflects 
the degree to which a pixel in the reference map is correctly identified in the produced map (the 
Atlas or GHSL classification). In 86 percent of cases where a pixel was built-up in the reference 
map, it was also identified as built up in Atlas and in 14 percent of cases, the Atlas failed to 
identify reference pixels as built-up, resulting in omission errors. The Atlas omits built up pixels 
in the reference only slightly less than the GHSL. The largest difference between the two 
datasets concerns producer’s accuracy for open space. When there is an open space pixel in the 
reference map, GHSL correctly identifies that pixel as open space 69 percent of the time, while 
the Atlas only identifies it correctly 55 percent of the time. The two datasets omitted 31 percent 
and 45 percent of reference map open space pixels respectively. User’s accuracy is a measure of 
commission errors and indicates the probability that a pixel category in the produced map 
actually represents that pixel category on the ground. When the Atlas identifies a pixel as built-
up, it is actually built-up 81 percent of the time and in 29 percent of the time, that built-up 
designation is a false alarm, or a commission error. Built-up user’s accuracy for GHSL is slightly 
higher, 86 percent. User’s accuracy for open space across the two datasets is the same, 63 
percent.  
 
Locale-Based Measures 
 
We then pooled all 16,764 locales across all cities to populate Atlas and GHSL specific error 
matrices, where the reference locale and the comparison locale were assigned majority class 
labels. The interpreted accuracy measures are shown below in table 3.  
 
Table 3: Accuracy measures based on pooling of all locales in the two datasets. 
 

 Atlas GHSL 
Overall accuracy 83% 84% 
Producer's accuracy, built-up 93% 86% 
Producer's accuracy, open space 56% 77% 
User's accuracy built-up 85% 91% 
User's accuracy open space 74% 66% 

Atlas GHSL
Overall accuracy 77% 78%
Producer's accuracy, built-up 86% 82%
Producer's accuracy, open space 55% 69%
User's accuracy built-up 81% 86%
User's accuracy open space 63% 63%
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Compared to the pixel-based analysis, we see slightly higher values across all measures in both 
datasets. The overall accuracy of locales using Atlas data is 83 percent compared to 84 percent 
for GHSL. Again, producer’s accuracy for the built-up class is higher for the Atlas while 
producer’s accuracy for the open space class is higher for GHSL. The differences are somewhat 
larger compared to the pixel-based analysis. There is now a six percentage point difference 
between the two datasets for built-up producer’s accuracy and a 19 percentage point difference 
for open space producer’s accuracy. User’s accuracy for the built-up class is still separated by 6 
percentage points but user’s accuracy for open space is 8 percentage points higher in the Atlas 
compared to GHSL, 74 percent vs. 66 percent. In the pixel-based assessment, user’s accuracy for 
open space was 63 percent for both datasets. A possible explanation for the differences in user’s 
and producer’s accuracy for open space in the locale-based analysis is as follows: the Atlas may 
have identified fewer open space locales than GHSL, but the relatively fewer open space locales 
it identified were open space locales in the reference dataset at a higher rate than GHSL. The 
GHSL may have identified more open space locales, which allowed it correctly identify more 
open space in the reference data, but this may also have led an overidentification of open space, 
which resulted in a higher rate of false alarms, or commission errors.   
 
The mean difference in percent built-up at the locale level is shown in figure 18. The mean 
difference for Atlas locales is positive, meaning they identify more built-up area on average than 
reference map locales. This mean difference is 5 percent and the median difference is 3 percent. 
The mean difference for GHSL is negative, meaning that on average the GHSL underestimates 
the percent built up compared to reference map locales. The mean GHSL difference is negative 2 
percent and the median difference is zero. The mean difference pools overestimates and 
underestimates which can cancel each other out. A more accurate reflection of the error across  
locales is obtained by calculating the mean absolute difference in percent built-up. The mean 
absolute difference paints a different picture, showing a 15 percent difference for Atlas locales 
and a 16 percent difference for GHSL locales. One possible interpretation of this finding is that 
the overestimates and underestimates in the GHSL dataset cancel each other out more equally, 
bringing its mean difference closer to zero. The negative mean difference indicates that there are 
more underestimates than overestimates in the GHSL dataset. In the Atlas, it would appear that 
there is marginally less overall error but the errors do not cancel each other out as much as the 
GHSL dataset. Rather, there are more overestimates than underestimates, and this leads to a 
positive mean difference, further away from zero than the GHSL dataset.  
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Figure 18: Mean difference in percent built up across all locales with 95 percent confidence 
intervals. 
 
 
 

Accuracy Based on City-Level Data 
 
Pixel-Based Measures 
 
A second layer of the accuracy analysis aggregated pixels and locales at the city level to derive 
city specific accuracy measures. If the performance of the Atlas and GHSL maps were consistent 
across cities, we might expect all cities to have the same accuracy scores. Figure 19 shows the 
distribution of overall accuracy at the city level for the Atlas and GHSL datasets. While both 
distributions show a strong central tendency, the distribution of scores range between 57 percent 
and 92 percent for the Atlas and between 30 percent and 92 percent for the GHSL. Differences 
observed at the city level may be due to a variety of factors, including: poor performance of the 
classification procedures in particular climates or geographic settings, temporal differences 
between the reference map data and the comparison maps at the city level, reference map errors 
that are not randomly distributed but associated with specific cities, and the case of the Atlas, 
variation in the skills of analysts, that may have affected the quality of the classifications or the 
quality of the digitization and labeling of reference imagery.  
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Figure 19: The distribution of pixel based overall accuracy calculated at the city level in the 
Atlas (left) and GHSL (right) datasets. 
 

 
Averaging city-level overall accuracy, we find that the two datasets perform very similarly, 75 
percent for the Atlas and 76 percent for GHSL. A paired t-test reveals that there is no statistical 
difference in the average overall accuracy of the two datasets at the 95 percent confidence 
interval. Average overall accuracy is two percentage points lower for both datasets compared to 
the result obtained from pooling all pixels across all cities. Since the average city-based score is 
averaged across cities and since the number of pixels associated with each city is not constant, 
perhaps low scoring cities with relatively fewer pixels bring down the average compared to  
pooling all pixels for all cities together. The breakdown of producer and user accuracy, in table 
4, shows a pattern very similar to pooled results.   
 
Table 4: Pixel based accuracy calculated by averaging across city level accuracy.  

 
The Atlas has higher producer’s accuracy for the built-up class but also lower user’s accuracy for 
the built-up class. This is likely explained by overidentification of the built-up class. 
Overidentification would ensure that built-up in the reference map is correctly identified but it 
might also mean that the rate of false positives, or commission errors, associated with the built-
up class may be high as well. Producer’s accuracy for open space is 15 percentage points higher 
for the GHSL while user’s accuracy for one space is essentially the same. When there is open 
space on the reference map, GHSL is less likely to omit that open space than the Atlas. When we 
look at individual open space pixels across the GHSL and Atlas classifications, those pixels 

Atlas GHSL
Overall accuracy 75% 76%
Producer's accuracy, built-up 85% 78%
Producer's accuracy, open space 54% 69%
User's accuracy built-up 79% 85%
User's accuracy open space 64% 65%
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actually represent open space on the ground nearly two-thirds of the time.  
 
Locale-Based Measures 
 
When we average locale-based accuracy measures across cities, we find minor differences in the 
results compared to those calculated by pooling all locales across all cities. This average masks 
variation in average locale based accuracy at the city level, shown in figure 20.  While several 
cities have accuracies of 95 percent or higher there are also a number of poor performing cities. 
The breakdown of overall accuracy, and producer’s and user’s accuracy is shown in table 5.   
 
Table 5: Locale based accuracy calculated by averaging across city level accuracy. 
 

 
Figure 20: The distribution of locale based overall accuracy calculated at the city level in 
the Atlas (left) and GHSL (right) datasets. 
 

 
 
 
The overall accuracy of the two datasets is the same, 82 percent. Overall accuracy at the locale 
level is higher than overall accuracy at the pixel level and only one percentage point lower 
compared to pooling locales across all cities.  Producer’s accuracy for the built-up class is higher 
in the Atlas compared to GHSL, 92 percent to 82 percent, but user’s accuracy for the built-up 
class is lower in the Atlas compared to GHSL, 84 percent to 92 percent. Again, this may be 
related to overidentification of the built-up class, which leads to correct identification of built up 
in the reference map but also a slightly higher rate of commission errors.  Producer’s accuracy 

Atlas GHSL
Overall accuracy 82% 82%
Producer's accuracy, built-up 92% 82%
Producer's accuracy, open space 59% 78%
User's accuracy built-up 84% 92%
User's accuracy open space 74% 68%
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for open space is lower in the Atlas than the GHSL, 59 percent compared to 78 percent though 
performance for the two datasets is reversed for open space user’s accuracy, 74 percent versus 68 
percent. The Atlas identifies open space in the reference map less often than the GHSL but when 
the Atlas identifies open space, it is slightly more likely to actually be open space the ground.  
 
The mean difference in percent built-up at the locale level, averaged across cities, is shown in 
figure 21. The mean difference for Atlas locales is positive, meaning Atlas locales identify more 
built up area on average than reference map locales; the negative mean difference for GHSL 
indicates that GHSL locales identify less built up area on average than reference map locales. 
The mean values are greater compared to the result obtained from pooling all locales across all 
cities. The Atlas mean difference is now 10 percent compared to 5 percent, and for the GHSL it 
is now negative 5 percent compared to negative 3 percent. These differences are likely explained 
by poorly performing cities that pull the pooled mean difference further away in a positive or 
negative direction.    
 
Figure 21: Mean difference in percent built up across locales across cities with 95 percent 
confidence intervals.  

 
 
The mean absolute built-up difference is 14 percent and 11 percent for the Atlas and GHSL 
datasets respectively. The overlapping confidence intervals for these averaged values suggests 
that the total percent error in each of the datasets is not significantly different at the 95 percent 
confidence level. Nevertheless, it appears that the overestimates and underestimates of percent 
built-up in the GHSL dataset cancel each out more and that it has slightly more underestimates. 
This is why its mean built-up difference is negative and closer to zero than the Atlas. The Atlas 
would appear to overestimate the percent built up more consistently, leading to a positive mean 
built-up difference that is further away from zero than the GHSL.   
 
Map Comparisons, Atlas vs. GHSL 
 
Pixel-Based and Locale-Based Comparisons 
 
We now focus on the comparison of the Atlas classifications to the GHSL classifications. The 
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accuracy measures, which compared both datasets to reference map data, showed the same 
general trends whether the results were pooled or whether they were aggregated by city and 
averaged across cities. Results obtained by averaging accuracies across cities were typically 
lower by a slight margin. For the comparison of the Atlas to the GHSL we focus only on the 
pooled comparisons. Measures of agreement are shown below in Table 6. 
 
Table 6: Atlas vs. GHSL pixel-based and locale-based measures of agreement. 
   

 
Although this comparison is not an assessment of accuracy, we retain the concepts of producer’s 
accuracy and user’s accuracy, replacing the word accuracy with agreement. The Atlas 
classifications are the comparison map while the GHSL is the reference map. The overall pixel-
based agreement shows 78 percent of all pixels were assigned the same class label across the two 
datasets. Locale based agreement, based on a majority classifier, was slightly higher, 81 percent. 
Built-up pixels in the GHSL dataset were correctly identified by the Atlas 88 percent of the time 
and built-up locales were correctly identified at an even higher rate of 94 percent. There is much 
lower agreement with respect to open space. When the GHSL identifies an open space pixel, the 
Atlas identifies that pixel as such only 56 percent of the time, and the outcome is even poorer, 52 
percent, at the locale level. User’s agreement for built up, or how often a built-up pixel or locale 
in the Atlas corresponds to built-up in the GHSL dataset is consistent across pixels and locales, 
80 and 81 percent respectively. User’s agreement for open space was lower for pixels but 
approximately the same for locales. The results suggest that there is considerable disagreement in 
the identification of open space class between the two datasets but much better agreement for the 
built-up class.  The Atlas failed to identify between 48 and 44 percent of open space identified by 
GHSL, depending on whether the measure is pixel or local based. 
 
The mean difference in percent built-up between the Atlas and GHSL across all locales is seven 
percent and the median difference is zero. The mean difference is pulled upward by some Atlas 
locales that identify much more open space than GHSL. The mean absolute difference in percent 
built-up between locales is 17 percent. In other words, sometimes the Atlas identified more built 
up area than GHSL and sometimes it identified less, but overall, the positive differences appear 
to outweigh the negatives, evidence by the mean difference of positive seven percent.  
 
Urban Extent 
 
The Toledo, Ohio urban extents created with the GHSL dataset and with the resampled Atlas 
data (at the GHSL spatial resolution) are shown in figure 22. Visual inspection suggests 
relatively good size and spatial agreement across the three time periods. In this particular 
example we find that the GHSL extent was 36 percent larger than the Atlas extent in 1990, 9 
percent larger in 2000 and 11 percent smaller in 2014. The Toledo example is representative of 

Pixel-based Locale-based
Overall agreement 78% 81%
Producer's agreement, built-up 88% 94%
Producer's agreement, open space 56% 52%
User's agreement built-up 80% 81%
User's agreement open space 71% 80%



Page 32 
 

the general trend we observe across all cities, namely, a larger GHSL extent in 1990, a more 
similarly sized extent in 2000, and a larger Atlas extent in 2014. 
 
Figure 22: The outlines of the Toledo, Ohio urban extent created by the Atlas (blue) and the 
GHSL (orange). 
 

 
The average percent difference in the size of the urban extent, averaged across 182 cities, is 
shown in table 7. Unresolved data processing errors resulted in the exclusion of 12 cities that 
were included in the accuracy analysis. The percent difference calculation shows the size of the 
GHSL extent relative to the Atlas extent.    
 
Table 7: Percent difference in urban extent created by the Atlas and GHSL datasets. 
 

 1990 2000 2014 
Average 100% 14% -21% 
Lower 95% CI 59% 3% -26% 
Upper 95% CI 141% 26% -16% 
Median 25% 0% -17% 

 
The average result for 1990, 100 percent, is striking. Extents created with GHSL data are on 
average twice as large as extends created with Atlas data. This large value can be explained by 
the presence of extreme outliers in 1990. The two most extreme outliers, Kozhikhode, India and 
Rawang, Malaysia, have extents more than 1,000 percent larger than their counterpart Atlas 
extents. The median 1990 GHSL extent is only 25 percent larger. In 2000, the difference was 
significantly smaller compared to 1990, only a 14 percent average difference between GHSL 
extents and Atlas extents. Although the 95 percent confidence interval for the year 2000 average 
is above zero, the median percent difference value across cities is zero, indicating that just as 
many GHSL extents are larger than Atlas extents as they are smaller. The positive average value 
suggests that when GHSL extents are larger than Atlas extents that difference is much greater 
than when they are smaller. In 2014, the relationship between GHSL and Atlas extents reverses. 
GHSL extents were found to be on average 21 percent smaller than Atlas extents and that 
difference is significant.  
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We explore the spatial agreement between urban extents created by each dataset by looking at 
the share of each urban extent that is exclusive to that dataset, meaning area that is not shared by 
the urban extent created by the other dataset. This area corresponds to the non-shaded areas in 
the Addis Ababa image in figure 17. The average shared area of a dataset is 1 minus its exclusive 
area. The average shares of exclusive areas are shown in figure 23.    
 
Figure 23: The average share of area exclusive to the urban extent generated at each time 
period with 95 percent confidence intervals.  
 

 
 
In 1990, 32 percent of the area of GHSL extents was exclusively GHSL area and 68 percent of 
GHSL areas were shared with Atlas extents. The exclusive area is smaller for Atlas extents in 
1990, only 12 percent, which is expected since Atlas extents were smaller than GHSL extents at 
that period, increasing the chance that they lie within GHSL extents.  In 2000 the average share 
of exclusive urban extent area for each dataset was 19 percent. The size agreement of extents 
across datasets (14 percent) would appear to be more similar than the spatial agreement of 
extents at this period. In 2014, we observe a reversed situation compared to 1990 due to the 
smaller size of GHSL extents relative to Atlas extents. Approximately 30 percent of the area of 
Atlas extents is not shared with the GHSL extents while only 8 percent of GHSL areas are not 
shared by Atlas extents.  
 

Discussion 
 
Accuracy 
 
It is encouraging that the overall accuracies obtained for the Atlas and GHSL datasets are very 
similar for the 2014 period. Pooled results show a difference in overall accuracy of only one 
percentage point. When the pixel and locale data is aggregated at the city level, we find that the 
average paired difference in overall accuracy across the two datasets is not significantly different 
than zero. A singular focus on overall accuracy masks differences in the accuracies of the built-
up and open space classes, however. For the 2014 period we observed that the Atlas identified 
the built-up class in the reference data somewhat better than the GHSL but that this was also 
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associated with a general pattern of over-identification that led to a higher rate of false alarms for 
the built-up class. The GHSL dataset identified the open space class in the reference data better 
than the Atlas, but when each dataset claimed a locale to be open space, the Atlas performed 
slightly better, perhaps because it was more parsimonious in its open class assignment. These 
differences are important for understanding why two datasets with virtually identical overall 
accuracies are associated with urban extents whose sizes are significantly different from each 
other.  
 
It is worth noting that the accuracy measures obtained from this analysis are lower than other 
reported accuracies of Landsat classifications in globally distributed urban sites. Angel et al 
(2005) used a virtually identical classification procedure and obtained an average overall 
accuracy of 89.2 percent; Schneider and Woodcock (2008) obtained accuracies between 84 and 
97 percent; Potere et al (2009) obtained an average overall accuracy of 87.1 percent; and Pesaresi 
et al (2016) obtained accuracies on the order of 90 – 97 percent. While Leyk et al (2018) 
assessed the GHSL accuracy at different time periods in the United States and a report variety of 
accuracy measures, they do not report a comparable overall accuracy measure. 
 
A direct comparison of the accuracy figures may be somewhat misleading owing to differences 
in the way accuracy was assessed. Angel et al (2005) and Schendier and Woodcock (2008) 
randomly sampled one-pixel sites across city study areas and analysts visually interpreted high-
resolution satellite imagery to assign the pixels a binary reference class label. In Potere et al 
(2009), analysts assigned majority class labels to 0.132 km2 hexagonal areas, similar in size to 
our locales, based on the photo-interpretation of Google Earth imagery (Potere, 2008). Pesaresi 
et al (2016) did not use photointerpretation of pixels but compared the GHSL built-up grid 
against reference data primarily from Europe and the United States.  
 
Our accuracy assessment relied on a globally distributed reference dataset that was created by the 
manual digitization of high resolution satellite imagery and the labeling of digitized polygons by 
analysts. In other words, our reference dataset was different in many respects. Furthermore, this 
dataset was rasterized to allow for one-to-one comparisons with the GHSL dataset. Perhaps an 
accuracy assessment based on the random sampling of one-pixel sites across study areas, where 
reference pixel labels are determined by the photointerpretation of individual pixels into binary 
‘majority built’ or ‘majority open space’ classes might lead to a result similar to those observed 
in other studies. We may conduct exploratory assessments in a small sample of cities to 
understand how the results associated with the two methods compare.   
 
At least four factors may have affected the accuracies we observed: (1) temporal relationships 
between the reference map imagery and the Landsat imagery, (2) reference map digitization or 
labeling errors, (3) information loss when the reference map polygon data is rasterized and 
resampled to match the GHSL resolution and when the Atlas data is resampled to match the 
GHSL resolution, and (4) idiosyncracies unique to the Atlas and GHSL classification methods. 
 
There would appear to be very little effect of temporal relationships on explaining error. In figure 
24, the temporal relationship between the comparison map date and the reference imagery date is 
represented by the x-axis and the share of built-up in a comparison map locale minus the share of 
built up in a reference map locale is represented by the y-axis. Each dot represents a locale. 
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Observations to the right of zero on the x-axis represent locales where the comparison map date 
comes after the reference imagery date. Observations to the left of zero on the x-axis represent 
locales where the comparison map date precedes the imagery date. If the reference imagery date 
precedes the comparison map date (observations to the right of zero on the x-axis), we might 
expect the reference data to say there is less built-up area while the comparison map says there is 
more built-up area. This would lead to more observations in the upper right quadrant. 
Conversely, if the reference image date comes after the comparison map, we might expect the 
reference data to say there is less built-up area while the comparison map says there is more built 
up area. This would lead to more observations in the lower left quadrant. If most observations 
were in the upper right and lower left quadrants, then the temporal relationships between 
reference imagery and the comparison maps would help explain differences in the amount of 
built up in locales. Instead, we see a random distribution of points across the four quadrants in 
both datasets, suggesting that differences between the amount of built in comparison map locales 
and reference map locales is not related to timing.  
 
Figure 24: Temporal relationships in the datasets on the x-axis vs. differences in the 
amount built up in locales on the y-axis. 

 
We were unable to explore potential errors in reference map digitization and labeling in a 
systematic way, but the inspection of a number of misclassified pixels and locales suggests that it 
is an issue that needs to be taken seriously in interpreting the results. Since analysts were tasked 
with digitizing and labeling blocks, mixed block spaces pose a problem since they may only 
receive a single label. Figure 25 illustrates an example of this problem in a locale in Halle, 
Germany. The image on the left shows all block outlines that were assigned one of the labels 
discussed in section 2.2.3.  The image on the right highlights those blocks identified as open 
space by the analyst. While the open space bocks are clearly open space, there also appear to be 
some open space patches distributed across other blocks that have a mixed built-up/open space 
character. This locale exemplifies the pattern of overall errors observed in the Atlas dataset, 
namely lower producer’s accuracy in identifying open spaces in the reference map, but lower 
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commission errors associated with Atlas open space areas.  
 
Figure 25: The digitalization of locale polygons in Halle, Germany, and the problem of 
mixed block spaces. 
 

 
 
We were unable to quantify the amount of information loss that occurs when reference map 
polygons are rasterized or when Atlas landcover classifications are resampled to the GHSL 
resolution. This procedure clearly leads to some degree of spatial generalization. This is visible 
from a comparison of figures 13 and 14. We do have an empirical insight into idiosyncrasies of 
the Atlas and GHSL classification methods and their proclivities for detecting built up area. 
Figure 26 shows the share of built up area in reference locales on the x-axis and the difference in 
the share of built-up in comparison locales and reference locales on the y-axis. Two different 
patterns are visible the two datasets.   
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Figure 26: The share built up in reference locales on the x-axis vs. the difference in the 
share built in comparison locales and reference locales on the y-axis (Atlas on the left, 
GHSL on the right). 
 

 
 
Intuitively, it would seem easier for detection methods to correctly identify locales that were 
either mostly built-up or mostly empty. This what we see on the GHSL chart on the right, where 
reference locales with between 90 percent and 100 percent built-up are associated with the 
lowest difference in the share built-up on the y-axis, and reference locales with between 0 and 10 
percent built up are associated with the second lowest difference in the share built-up on the y-
axis. The increasing then decreasing hump like pattern in the GHSL is absent from Atlas locales. 
While reference locales that have a high share built up are associated with small differences, the 
difference increases linearly as the amount of built up in the reference locale decreases.   
 
Urban Extent Comparisons 
 
It is difficult to reconcile differences in the sizes of urban extents created by the GHSL and the 
Atlas with the knowledge that the overall pixel-based and locale-based accuracies of the two 
datasets are essentially equal. It is also difficult to understand why we observe larger Atlas 
extents in 2014 but larger GHSL extents in 1990 and 2000. If the classification method in each 
dataset is consistent, we should expect to see the same relationship between extents over time.  
 
With regard to the most recent time period, we have observed that the Atlas tends to identify 
more built-up area than the GHSL. This is evidenced by the higher producer’s accuracy and 
lower user’s accuracy for the built-up class, the positive mean difference for the share of built-up 
in locales seen in figures 18 and 21, and the trend observed in figure 26. A dataset that identifies 
more built-up pixels will also identify larger clusters and larger extents, all things being equal.   
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Even though the Atlas identified more built-up area in 2014 on average than the GHSL, we find 
that the difference in urban extents is typically greater than the difference in amount of built up 
area. In other words, the difference in urban extent is an accentuated version of the difference in 
built-up area. We explored this relationship by examining the level of saturation in an area 
defined by the union of urban extents created by each dataset in a given city. Saturation is simply 
the built-up area divided by total area. In this case, the total area is the union of the two urban 
extents. Across this unioned area, we have the set of Atlas pixels and we have the set GHSL 
pixels, and we can calculate the saturation associated with the two datasets, which is a number 
between 0 and 1. For each city, we calculated a saturation ratio, or the GHSL saturation divided 
by Atlas saturation. For each city we have also calculated the ratio of the GHSL extent to the 
Atlas extent. These ratios are shown in table 8.   
 
Table 8: Saturation ratios vs. urban extent ratios. 

 
Across all three time periods, the dataset that identified more built-up pixels in the unioned area, 
or the more saturated dataset, was associated with larger urban extents. In 1990, GHSL was 55 
percent more saturated than the Atlas but GHSL extents were on average 100 percent larger. In 
2014, GHSL was 91 percent as saturated as the Atlas across the unioned area but GHSL extents 
were only 79 percent as large. In 2000, GHSL was 10 percent more saturated than the Atlas, but 
GHSL extents were 14 percent larger.  
 
Conceptually, urban extent should be more than a linear function of saturation; the spatial 
distribution of built-up pixels across a given area will also influence how built-up area and open 
space combine to create urban extents. Could changing spatial forms over time be contributing to 
the changing relationship between saturation and urban extent over time? Perhaps, but we are 
unable to answer this question definitively at this time. Further explorations of the data are 
needed to provide insights.  
 
While we can quantify the accuracy of the Atlas and GHSL classifications at 2014, we are less 
certain about the datasets’ accuracy at earlier periods. If the classification methods and input data 
quality are relatively consistent across time, we would expect the accuracy at 2014 to carry over 
to the earlier time periods. The large differences in saturation and urban extent at the 1990 are 
rather surprising and calls into question the accuracy of the datasets at that period. Additional 
scrutiny of the 1990 classifications may be necessary to resolve questions about historical trends.  
 

Conclusion 
 

Comprehensive accuracy analyses of global built-up area datasets are very costly and we were 
fortunate that the manually digitized satellite imagery from second volume of the Atlas could be 
employed for this task. We have obtained an answer to our initial question about the accuracy of 

1990 2000 2014
Average Saturation Ratio 
(GHSL ÷ Atlas) 1.55 1.10 0.91
Average Urban Extent Ratio 
(GHSL ÷ Atlas) 2.00 1.14 0.79
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the landcover classifications in the Atlas and GHSL datasets. When compared to an independent 
reference dataset, the Atlas and GHSL were found to have nearly identical overall accuracy but 
different accuracies for the built-up and open space classes.  We also know how urban extents 
created by the two datasets compare. The extents created by the two datasets were significantly 
different in size within a given time period and the relationship between them varied across time 
periods: Atlas extents were larger in 2014 but GHSL extents were larger in 2000 and 1990.  
 
While the knowledge gained is important to our understanding of the strengths and weaknesses 
of the GHSL and the Atlas, it has not provided a conclusive verdict on either dataset. It is 
difficult, but not impossible, to reconcile the nearly identical and relatively high accuracy in both 
datasets with urban extents that are significantly different in size. Perhaps these differences are 
the reflection of an urban extent methodology that is too sensitive to variations in the quantity 
and spatial distribution of built-up and open space pixels. It may be prudent to revisit and revise 
and urban extent methodology to make it more robust.  
 
It may also be worthwhile to conduct a pixel-based accuracy assessment using high resolution 
satellite imagery in a sub-sample of cities. The Bing Aerial Imagery Analyzer for 
OpenStreetMap could be used to evaluate temporal relationships between the comparison map 
data and the reference imagery. We could then compare the accuracy obtained from the pixel-
based assessment against the accuracy obtained from this analysis. We suspect the pixel-based 
accuracies will be higher owing to the problem of mixed blocks discussed in section 5. The 
extent to which mixed blocks or other digitization errors affect accuracy can be determined 
empirically. In a related vein, the feasibility of implementing an open sourced worldwide 
(quality controlled) assessment framework, similar to the one employed by Potere (2008), is 
worth exploring.  
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